
NASA-CR-201448

Three-Dimensional User Interfaces

for Scientific Visualization

Research Grant No. NAG 2-830

FINAL REPORT

(April 1, 1993 to March 31, 1996)

Brown University Computer Graphics Group

Dept. of Computer Science

PO Box 1910, Brown University

Providence, RI 02912

Principal Investigator: Andries van Dam

Abstract

This document is a final report of the research completed by The Brown

University Graphics Group under NASA Contracts NRA2-35255(JLB),

NRA2-35862 (LMV), and NRA2-36206 (LMV) from April 1993 to March

1996. The focus of this grant was to experiment with novel user interfaces

for scientific visualization applications using both desktop and virtual real-

ity (VR) systems, and thus to advance the state of the art of user interface

technology for this domain. This technology has been transferred to NASA

via periodic status reports and papers relating to this grant that have been

published in conference proceedings. This final report summar&es the

research completed over the past three years, and subsumes all prior

reports.

Three-Dimensional User Interfaces for Scientific Visualization

1 Project Description

2 Accomplishments

3 Development Environment
3.1 Software

3.2 Hardware

4 3D Widgets and Interaction Techniques

4.1 Definitions

4.2 Taxonomy of Tasks

5 General Design Issues

5.1 Don't Mindlessly Transfer 2D User Interfaces into 3D Environments

5.2 Look to Real World Human-Object Interaction for Inspiration

5.3 Consider Characteristics of Input and Output Devices

5.4 Consider Geometric Properties of the Application Environment

5.5 Widgets should be as Non-Intrusive as Possible

5.6 Provide Adequate Feedback to the User

5.7 Map Widget's Geometry and Behavior to Spatial Quantities of Function it Controls

5.8 Consider Alternatives to Geometric Widgets when Appropriate

Implementations
6.1 Selection

6.2

6.3

6.4

6.1.1 Desktop

6.1.2 Virtual Reality

6.1.2.1 Virtual Input Devices and Physical Props
6.1.2.2 Touch

6.1.2.3 Touch Plus Intersection Ray
6.1.2.4 Laser Pointer

6.1.2.5 Target (Laser Pointer from Eye)

6.1.2.6 Aperture

6.1.2.7 Glove-Based Interface for Aperture
6.1.2.8 Orientation

Manipulation

6.2.1 Direct vs. Indirect Manipulation

6.2.2 Types of Manipulation in 3D Applications

6.2.3 Position and Orientation Techniques
6.2.3.1 Interactive Shadows

6.2.3.2 Object Handles

6.2.3.3 Grid-Aligned Handles

6.2.3.4 Data-Space Handles

6.2.4 Direct Manipulation Visualization Techniques

6.2.5 Manipulation after Selection in Virtual Reality

Navigation

Complex Widget Designs

6.4.1 Generalized Probe

6.4.1.1 Zero-Dimensional Probe

6.4.1.2 One-Dimensional Rake

6.4.1.3 Two-Dimensional Plane

6.4.1.4 Three-Dimensional Volume

6

1

1

2

2

3

3

3

5

5

5

6

7

8

8

9

10

10

10

11

11

11

13

13

14

16

16

17

19

19

21

21

22

22

23

24

25

26

27

28

29

29

30

31

31

32

33

Three-Dimensional User Interfaces for Scientific Visualization

6.4.1.5 Interface to the Generalized Probe

6.4.2 Menus and Buttons

6.4.2.1 Menus and Buttons in IVE's

6.4.2.2 Spherical Menus
6.4.2.3 Dial Menus

7 Other Visualization Techniques
7.1 Flux Ball

7.2 Smoke Rings

8 Annotation System

9 Techniques for Real-Time Interaction

9.1 Time-Critical Scheduling Algorithm
10 Evaluation

10.1 User study: Positioning tools

10.2 Pilot study: Selection techniques in IVE's
11 Future Work

11.1 Controlling parameters of visualization techniques

11.2 Annotation

11.3 Animation

11.4 User Studies and Pilot Studies

11.5 Navigation

12 Publications and Reports Related to this Grant
13 Brown Personnel

14 Facilities and Equipment at Brown

15 Acknowledgments
16 References

Appendix A: Tracker Calibration

34

34

34

35

35

37

37

38

40

40

41

41

42

42

43

44

44

45

45

45

46

46

46

47

47

50

Three-Dimensional User Interfaces for Scientific Visualization

1 Project Description

The main goal of this project was to develop novel and productive user interfaces

for creating and managing visualizations of computational fluid dynamics (CFD)

datasets. The existing commercial software applications for CFD visualization

(including [2] [16] [24]) are full-featured systems for visualizing and analyzing datasets,

but are all dominated by two-dimensional user interfaces that can complicate certain

3D operations. In contrast, our approach has been to develop user interface tools that

exist within the same three-dimensional space as the data being visualized. We feel that

this approach yields more intuitive user interfaces for tasks which are inherently 3D,

thus reducing the cognitive distance between a user's intentions and actions. Building

on our prior work in 3D user interfaces [12] [19] [38] and the Virtual Wind Tunnel

project at NASA [6], we have implemented a series of interaction techniques and 3D

widgets specifically tailored for scientific visualization tasks. The bulk of this work was

done using conventional desktop hardware, but the most recent developments have

focused on new interaction techniques which exploit unique characteristics of

immersive virtual environments. The software for this research was written using our

own comprehensive 3D graphics system.

2 Accomplishments

The research accomplishments of the past three years have centered on the

designs and implementations of user interfaces for scientific visualization. To support

this work, we first implemented a basic scientific visualization application

development environment using the Graphics Group's own 3D graphics software

system (UGA [44]) including the following visualization techniques: scalar and vector

probes (with numerical, colored or tuft displays), streamlines and particle paths,

isosurfaces and cutting planes (colored and tufts). Although commercial systems

generally support many more visualization techniques than these, we feel that with our

system we can experiment with a wide variety of user interface issues that directly

relate to the general needs of the scientific visualization user community. Using this

environment as a base, we have done the following:

• Designed and implemented a variety of interaction techniques and widgets for

desktop and virtual reality systems (Section 4.2) for

- selecting and placing probes in a dataset

- controlling parameters of common visualization techniques

- navigating through an environment

• Performed user and pilot studies to evaluate these user interface designs

- positioning (Section 10.1)

- selection tasks (Section 10.2)

• Formalized a methodology for the design of three dimensional user interfaces

(Section 5)

• Implemented two visualization techniques (Section 7)
- flux ball

- smoke ring

P_el

Three-DimensionalUserInterfacesforScientificVisualization

• Implemented a system for graphically annotating fluid flows (Section8)
• Developed a time-critical scheduling algorithm for managing the computational

resourcesrequired by typical scientific visualization applications (Section9)

The two new visualization techniques that we have implemented aredescribed later in
this document. The remainder of this report will describeeachof the above items in
more detail; someof theseaccomplishments have beenpresented at computer graphics
and user interface conferences.

3 Development Environment

3.1 Software

Over the course of this research, we have implemented two applications with

which to experiment with user interfaces for scientific visualization tasks. These

applications were written using our in-house graphics system, called the Unified

Graphics Architecture (UGA) [44]. The first application was implemented in the FLESH

programming language, an interpreted, object-oriented language developed by the

Graphics Group. This language served as an interface to the underlying functionality of

the UGA system. This first application, which we used for the majority of our user

interface experiments on the desktop, was ideal for this kind of experimentation

because one could rapidly prototype new interaction techniques and widgets. The

downside of FLESH, however, was its poor performance when using it for anything

but simple designs.

The Graphics Group then implemented another system, called "trim-lite". This

newer system is written in C++ and consists of a relatively small set of libraries which

include classes for many of the same components of 3D graphics applications that the

FLESH programming language supported, including geometric objects, cameras, lights

and input devices. We chose C++ for this system because it afforded much higher

performance than the interpreted FLESH language did. As our interface designs

became more complex, we needed this increased performance to properly evaluate

new interface designs.

Applications written using the "trim-lite" libraries are compiled and thus run

more efficiently than FLESH applications. As part of this grant, we added a library to

"trim-lite" which performs all of the low-level scientific visualization functions of our

prior application, and designed a framework in which we could continue our user

interface experiments both on the desktop and in immersive virtual environments

(IVE). The resulting application, which is still under rapid development, includes many

of the user interface components of the earlier FLESH application. However, we have

focused more strongly on implementing new techniques specifically tailored for virtual

reality.

We have tested our system with relatively simple (less than 500,000 points) steady-

flow datasets using both regular and curvilinear computation grids. The majority of

our work has been done on a curvilinear dataset of airflow velocity (speed and

direction) past the body of the Space Shuttle, though we have also used a number of

other datasets including a rectilinear time-varying dataset of magma flows in the

P_e2

Three-DimensionalUserInterfacesforScientificVisualization

Earth's mantle (courtesy of Brown's Geology department), and a rectilinear datasetof
electrical potential in the human torso (courtesy of the University of Utah).

3.2 Hardware

On the desktop, we have used both conventional hardware (CRT and 2D mouse),

and "fishtank virtual reality" hardware, including a Logitech 6D mouse and

StereoGraphics LCD shutter glasses.

In our VR lab, we primarily use a single Ascension Bird tracker for one-handed

input in conjunction with a Binocular Omni-Orientation Monitor (BOOM) for head

tracking and stereoscopic display. The tracker is equipped with three buttons for

additional input. In its default configuration, the tracker controls the position of a

simple 3D crosshair cursor in the virtual world.

We also have a glove input device which can be used to input more complex data

to the application such as postures and gestures of the hand. Though we have not yet

used the glove directly within our scientific visualization application, we have

developed the support software to recognize hand postures, and have considered a

number of techniques which require this device. We discuss these techniques later in
this document.

4 3D Widgets and Interaction Techniques

In the following sections, we will discuss the various user interface issues and

designs that we have worked on over the course of this research. We begin with a few

definitions, and present a taxonomy of 3D graphics application tasks, then discuss our

user interface design methodology, and finish with descriptions of the specific

interaction techniques and 3D widgets that we have implemented.

4.1 Definitions

A widget is an entity which possesses both geometry and behavior [12]. We define

the geometry of a widget to be its visual appearance when rendered to an output

device. The behavior of a widget represents its functional role in an application and

defines both how it reacts to user interaction as well as how it affects aspects of the

application environment when manipulated by a user. At this fundamental level, 2D

and 3D widgets are identical. However, on a practical level, they differ in that 3D

widgets exist in a 3D scene whereas 2D widgets exist within a 2D windowing

environment. We do not consider 2D widgets that have a 3D "look" (typically achieved

with drop shadows) to be true 3D widgets.

According to this definition, a wide range of entities can be called widgets. In

practice, we divide this spectrum into specific categories (Figure 1). At one extreme are

widgets with geometry but no behavior. These entities, which we call "primitive

objects", are the building blocks of virtual environments, and are defined by their

geometric attributes (position, size, orientation, color, etc.). When modified by a user,

there are no side effects in the surrounding environment.

Page 3

Three-Dimensional User Interfaces for Scientific Visualization

lots

©

_rimitive
objects

interaction

none behavior lots

Figure 1: The spectrum of geometry and behavior in widgets. The ratio of geometry to behavior
determines whether the object is a primitive, an interaction technique, or a "true" widget with a

combination of both geometry and behavior.

At the other end of the spectrum are widgets with behavior but no geometry. The

purpose of these entities, or "interaction techniques," is to translate raw user input

(e.g., mouse deltas, button presses, etc.) into meaningful actions in a 3D scene. For

example, an interaction technique for panning a camera in a desktop application

converts 2D mouse deltas into transformations which are applied to the camera

viewing a 3D scene. Likewise, an interaction technique for manipulating a 3D object

converts mouse deltas into transformations which are applied to the object. Generally,

the only feedback that an interaction technique supplies is its actual effect on the scene

(e.g., the motion of the camera or object being manipulated).

In the middle of the spectrum lie an array of "true" widgets which contain a more

balanced mix of geometry and behavior. Like interaction techniques, the behavioral

components of these widgets serve to transform raw user input into values which are

meaningful to primitive objects. The geometry of a widget acts as a virtual input device

through which we can indirectly modify attributes of an object that may be unnatural

or impossible to access directly through a simpler interaction technique (further

discussion of manipulation is in Section 6.2).

Both interaction techniques and widgets can be used to modify spatial or non-

spatial parameters of primitive objects. Widgets with geometry are often designed to

provide feedback to the user, though this is not always necessary. For example, the

rake widget, described later, utilizes a one-dimensional slider to set the number of

streamlines along its bar. The position of the slider simultaneously determines the

distance between the streamlines on the bar and provides feedback to the user about

this spatial quantity.

Page 4

Three-Dimensional User Interfaces for Scientific Visualization

4.2 Taxonomy of Tasks

In interactive 3D graphics applications, tasks can be classified according to the

following three categories:

• selection (of objects)

• manipulation (of objects, parameters, etc.)

• navigation (of viewpoint)

Most of the interaction techniques and widgets that we have implemented fall neatly

into one of these categories. Section 6 describes the techniques that we have

implemented for our scientific visualization application.

This taxonomy expands on Robinett and Holloway's [36] presentation of the

manually-controlled actions that may be implemented in an IVE which involve

changing the location, orientation or scale of either an object in the IVE (manipulation)

or the user herself (navigation). In Robinett's treatment, the selection task is implicitly

included as part of manipulation. We have chosen to make selection a unique category

because as with manipulation and navigation tasks, there are a wide variety of unique

methods for performing this task.

5 General Design Issues

What follows is a description of some of the design issues that we have

encountered in our exploration of 3D user interface development. In general, we try to

adhere to a few rules of thumb when designing 3D widgets:

• Don't mindlessly transfer 2D user interfaces into 3D environments.

• Look to real world human-object interaction for inspiration.

• Consider the characteristics of input and output devices.

• Consider geometric properties of the application environment.

• Widgets should be as non-intrusive as possible.

• Provide adequate feedback to user.

• Map widget's geometry and behavior to spatial quantities of function it controls.

• Consider alternatives to geometric widgets when appropriate.

The following few sections describes each of these rules in more detail.

5.1 Don't Mindlessly Transfer 2D User Interfaces into 3D Environments

2D and 3D user interfaces are very different from each other, not only in the

geometry which defines their visual appearance, but also in their relationship with the

underlying application. Most 2D graphical user interfaces (GUI's) are built on top of a

relatively small set of fundamental primitives objects (windows, buttons, menus,

sliders, etc.) and are controlled by pointing, clicking and dragging with a mouse. 2D

interfaces for even wildly different applications are thus very similar to one another in
their "look and feel".

P_e5

Three-Dimensional User Interfaces for Scientific Visualization

In contrast, 3D interfaces, especiall), those for IVE's, potentially have more task-
and application-dependent components\ This is because 3D interfaces exist within an

environment which has many, if not all, of the degrees of freedom of the real world and

thus affords more latitude for design than 2D environments. It is natural, therefore, to

design specific tools for specific tasks in 3D applications, just as we build specialized

tools for all manner of tasks in the real world. The components of 2D interfaces are

more general in their applicability than many 3D widgets, and may find their place in

3D applications, even IVE's. However, we must be careful not to simpl_ transfer 2D
interfaces into 3D environments without considering the consequences . Instead, we

should design 3D interfaces that exploit the unique characteristics of IVE's. Some of the

following guidelines suggest ways to do this.

5.2 Look to Real World Human-Object Interaction for Inspiration

One of the most important guiding principles of user interface design, especially

3D interface design, is derived from the observation that human beings are very adept

at using tools in the real world to interact with objects in their environment. This ability

to design and use tools for constructive (and destructive) tasks sets us apart from other

animals, and should be exploited as much as possible by user interfaces for computer

applications. When designing user interface techniques, we therefore attempt to

identify techniques in humans' real-world interactions that are similar to the tasks we

wish to perform on a computer. In some rare cases, we can exactly transfer a real-world

technique into a virtual world, but more commonly, we must implement a

metaphorical interpretation of the real-world technique. We are forced to do this partly

because of limitations of input and output devices, but also because particular tasks in

a computer application are not exactly like any real-world tasks. Often times, however,

a metaphor becomes a very powerful tool of its own and allows us to perform tasks on

the computer which would be impossible in a real-world setting.

In general, we feel that the most successful user interface techniques are those that

can be related in some way to human experience of the real world. Certainly, the

computer is a relatively new tool in human experience, and thus presents new

possibilities for interaction that were not conceivable with previous instruments. In

some cases, therefore, people must learn new skills for interacting with computers that

they would not otherwise have acquired (e.g., using a mouse). However, by

recognizing peoples' familiarity with other tools in the real world, we can facilitate the

learning of new tools on the computer.

Many of the interaction techniques and widgets that are described later in this
document are derived from observations of real-world tools and human interactions.

The other general design issues discussed below reflect some of the factors we must

consider when transferring these real-world situations into user interfaces.

1. Despite their tendency toward application-dependence, there are still commonalities among 3D inter-

faces, as listed in the taxonomy in Section 4.2. Manipulation tasks can be further broken down into the

affine transformations - (constrained) translation, (constrained) rotation and (constrained) scaling -

which are used in application-specific widgets.

2. Menus, for example, are a staple of 2D interfaces, but, as discussed later (Section 6.4.2.1), are problem-
atic in IVE's.

P_e6

Three-DimensionalUserInterfacesforScientificVisualization

5.3 Consider Characteristics of Input and Output Devices

Input and output devices play a crucial role in user interfaces because they are the

primary channels through which human-computer interaction occurs. Without these

devices, there is no communication between the human user and the computer

application. Furthermore, each input and output device has its own particular

characteristics which define how the device is used by a human and therefore what

kind of interaction dialog can take place. For example, 2D mice have one or more

buttons which produce discrete events, as well as a mechanism for producing data

about relative location. This device was designed for so-called "point-and-click"

interfaces, and is therefore difficult to adapt to other interaction paradigms. Certainly,

mice have been used for gestural interfaces which push the boundaries of event-based

point-and-click designs, but these are still two-dimensional in nature. Also, mice have

been used in some research systems as continuous input devices, providing input to

analytic functions within an application [15].

2D mice are often used to supply data for interaction techniques in 3D

applications, but only when the techniques require just two input values. Since it is

impossible to specify full three-dimensional motion with a 2D mouse, the interaction

techniques in software must map the two-dimensional input onto some 2D subset of

the 3D environment (e.g., translating an object in a plane). In many cases, it may be

more appropriate to use a 3D device for this kind of task.

As a general rule, a given input device can only specify as many (or fewer)

degrees of freedom as it supports. This fact may seem obvious, but it has important

consequences on the design of user interfaces, especially those that support a variety of

input and output devices. Specifically, any application which intends to support

multiple types of devices must include interaction techniques and widgets which are

appropriate for all of them. For example, one of the user studies we conducted (Section

10.1) showed that the interactive shadow widgets were difficult to use in desktop VR

because subjects had a hard time using an input device with six degrees of freedom

(only three positional) to manipulate an object with only two degrees of freedom. One

solution to this problem is to only allow manipulation of the shadow widgets in the

desktop environment with the 2D mouse. The shadows may still be displayed in an

IVE, but they may not be interactive. However, if the shadows themselves serve

another purpose, such as controlling the positions of light sources in the environment,

then it would once again be advantageous to manipulate them in the WE.

Output devices also impose constraints on the user interface. On the desktop,

CRT's have a limited number of pixels with which to display interface components.

Text must not be so small as to be illegible; widgets must neither be so large that they

leave no room for the rest of the interface, nor so small that they are invisible to the

user. VR output devices such as the BOOM and other head-mounted displays also have

limited resolution and impose similar constraints on interfaces for IVE's °. However,

since IVE interfaces typically enable users to navigate through the 3D environment, it is

, In fact, today's head-mounted displays typically have very low resolution (640x480 pixels) compared

with standard workstation screens (1280x1024 pixels), rendering users legally blind. Exceptions include

the BOOM (which is technically a "head-coupled" display because it is not attached to the user's head),
and some other high-end displays.

Page 7

Three-Dimensional User Interfaces for Scientific Visualization

possible to get closer to 3D widgets to get a better look at fine details.

5.4 Consider Geometric Properties of the Application Environment

One of the factors that makes 3D interface design more complicated than 2D

design is that since a 3D interface resides in an environment which can be viewed from

arbitrary viewpoints, it must be designed so that it is still useful from any point of

view. Also, unlike 2D user interfaces, which must fit within the physical dimensions of

a CRT screen, a 3D interface can exist anywhere within an infinite 3D volume. As a

result, the interface designer can not take it for granted that the 3D interface will

necessarily be visible at all times. Certainly, a similar problem exists in a 2D desktop

windowing environment when windows obscure one another, but the techniques one

uses to navigate through the interface and find a particular component are different in

3D. In 2D, the number of pixels on a screen defines geometric boundaries within which

the user interface components must fall, so a widget must be on the desktop. In 3D, the

widget could be anywhere in a potentially very large volume.

In practice, IVE applications usually confine themselves to some finite region. For

instance, in our scientific visualization application, we only interact within a relatively

small region defined by the extent of the CFD dataset. Thus, the interface designer need

not worry about users "leaving the interface behind" in another non-visible part of the

IVE because the entire world is always visible (if not obscured by other objects in the

scene, of course). In more complex environments composed of "rooms" ([9]), for

example, this becomes more of an issue.

Even in relatively well-contained IVE's, however, user interface designers must

consider the scale of the environment. In our application, for instance, we can read in

many different kinds of datasets of all different sizes and scales, so the user interface

must be able to adapt. It would be pointless to use a 3D widget that measured three

inches long in a dataset the size of a one-inch cube. The obvious solutions are to either

scale up the dataset, or reduce the scale of the widgets. In the case of a curvilinear

dataset, however, there are data at many different scales within the same dataset,

suggesting that the user interface must be able to dynamically change scale depending

on its location in the scene. We have only begun to explore the problems that this kind

of interface presents.

5.5 Widgets should be as Non-Intrusive as Possible

Since the primitive objects in a 3D scene are often the most important

components, they must be visible at all times and not obscured by interface geometry.

In a scientific visualization application, this is especially true of the visualization

primitives (streamlines, cutting planes, etc.). As shown in the user interfaces described

later on, we often choose to draw our 3D widgets in wireframe. This reflects a

conscious attempt on our part to make the necessary geometry of the widgets less

intrusive. In addition to wireframe rendering, we try to make widgets as small as

possible. However, as the size of a widget decreases, it can become more difficult to see

or pick it in order to manipulate it. A balance must therefore be met so that the

interface is usable in a majority of the foreseeable cases.

In the desktop version of our application, we designed the widgets with this

P_e8

Three_Dimensional User Interfaces for Scientific Visualization

balance in mind. Of course, in any perspective projection of a scene, it is alwaysthe viewpoint that it is not pickable
_ • b'ect will be so far from . __-_.-._ 1_ which virtually

possible that a gaven o } -_,-_-;,_n technique, ctescnv_ _,_ter,

(though in an WE, we use a se_-_-_ components are
eliminates this possibility). migrated the 3D

Both pickability and visual appearance of the 3D user interface
some of them are very

extremely important issues in WE applications as well. As we have

widgets into a fully immersive environment, we have found that themselves, or, as will
• • used to select and manipulate them. Fordifficult to use without significant redesign of either the widgets

. • teractlon techniques .. J _._,,_ ,A,'d_ets, such as the
be discussed later, the m _ of the generauzect Pl_'_.'_. "1(_° lec t in our IVE

example, some of the compo_-_-_
resolution and scale handles, were initially nearly impossible to _for a mouse-based system• Our evaluations of selection

because they were designed . , wn that selection techniquesstudies for IVE s have sho _,._ it ,,_ie t pick small objects
techniques through user virtual environments can ntar._ r o -

designed specifically for

5.6 Provide Adequate Feedback to the User

Feedback to the user is an essential component of a good user interface, and must

be incorporated in the design of any interaction technique or widget. Deciding on the

exact nature of this feedback is an important part of user interface design. For example,

simple tricks like predictive highlighting so that the user knows what will happen
when she clicks or releases the mouse button cart only help usability. There are other

more subtle feedback mechanisms, though, which are very important to implement

correctly in 3D interfaces. On both the desktop and in VR, for example, we have found

that it is very important to maintain correlation between the cursor and the object being

manipulated. When moving objects in the real world with our hands, we maintain

contact with the object until we let go of it. On the computer, we cannot touch objects

without haptic devices, but we can maintain the illusion that we are directly

manipulating objects by providing visual feedback which suggests the contact

relationshiP between our input device and the object of interest.
Though feedback is sometimes discrete, it often takes the form of a continuous

loop in our user interfaces. That is, for example, the user thinks to move an object to the

left, so she drags the mouse to the left. She then sees the object move to the left, thus to

confirming the validity of her action. Based on this positive feedback, she continues

move the mouse to the left until she has placed the object at its destination. Ideally, the

feedback loop has a very high frequency, thus reducing the cognitive load on the user.

Maintaining physical correlation between a cursor and object being manipulated

increases the frequency of the feedback loop because it provides positive feedback. An

example of negative feedback would be an interface which moved an object up and

down in response to left-right mouse m oti°ns4" The performance of the application

ser interfaces for 3D applications. For
...... t-_havior is typical of 2D u ;_,,latin_, a 1D slider which is

4. Unfortunately ihn_W3Dr'o_jSct_ng _ex axis is often a_COmuPsli_eoat_Ysl_lfice_tcognitive effort to corre-
example, mov g ,._ ,- axis As a result, user be able to predict which
most likely not angnea w_u_ u,_. _ • 3D scene. Moreover, users may not
late their input with the visible effects on the
direction on the screen an object will move in response to the slider manipulation unless additional inter-

face components are available which display the current orientation of the scene, for example.

Page 9

Three-Dimensional User Interfaces for Scientific Visualization

obviously plays a critical role in providing high-frequency feedback to the user (this

fact in part motivated our switch from FLESH to "trim-lite").

5.7 Map Widget's Geometry and Behavior to Spatial Quantities of Func-

tion it Controls

Typically, widgets are used to visualize and modify specific properties of an

primitive object or to control parameters of abstract functions. We generally attempt to

design a widget so that the degrees of freedom of its manipulable components match

the properties or parameters it controls. For instance, a widget for translating objects

along a single axis in space should itself be constrained to move only along that axis. If

it behaved otherwise, it would be misleading. Similarly, a widget to control a single

scalar parameter of a function might also be constrained to translate along or rotate

about a single axis (like a physical slider or dial).

Not only should a widget have the same degrees of freedom as the parameters it

controls, but it should also, whenever possible, be designed so that its visual

appearance matches the qualities of the parameter, and change its own appearance

(position, size, color, etc.) along with the changing parameter. For example, the

geometry of a widget which controls the size of a sphere of influence might be a bar

whose length is the radius of the sphere. Changing the length of the bar modifies the

radius of the sphere. In the rake widget described later, a one-dimensional slider

controls the number of streamlines that the rake emits. We chose to represent this slider

with the geometry of a cylinder in order to reflects the one-dimensional parameter it

controls. In our design, the position of the slider on the rake relative to one end of the

rake determines the spacing between the streamlines.

5.8 Consider Alternatives to Geometric Widgets when Appropriate

Still other research in the group has focused on developing gesture-based user

interfaces for controlling 3D environments. The Graphics Group developed an

application, called SKETCH [45], which uses these techniques to facilitate rapid

construction of 3D models from simple sketched gestures. This application currently

works with either a 2D mouse or tablet. To date, we have not applied this gestural

interface research to the scientific visualization application, but we may consider doing

so in the future. For example, using a sketch-style interface, scientists could quickly

instantiate new widgets in a dataset by roughly sketching their salient geometric

features into the 3D scene.

Eliminating the geometry of widgets from the scene is likely to be a good thing in

some cases, but we must be sure not to lose their functionality in the process. Also, we

must be wary not to misuse gesture-based interfaces when more traditional geometric

widgets might be more effective.

6 Implementations

The following sections describe implementations of the user interfaces that we

have experimented with over the course of this research. When appropriate, we discuss

Page 10

Three-Dimensional User Interfaces for Scientific Visualization

how particular design decisions were made, and how these designs relate to the

methodology described above. The first three sections address each of the tasks

outlined in the taxonomy above. The final section on complex widgets describes some

user interface designs for controlling abstract parameters of an application

environment. These widgets require users to combine the selection and manipulation

tasks to form a dialog with the interface.

6.1 Selection

Selection is one of the fundamental tasks in any interactive graphics application.

Through selection, users indicate which objects they are interacting with and specify

which parameters they wish to view or modify. The method used to select an object,

however, differs greatly depending on the type of input and output devices at hand

and the application itself. We have implemented a variety of techniques for both

desktop and VR systems.

6.1.1 Desktop

There are a variety of configurations of input and output devices for desktop

systems, ranging from the conventional CRT and 2D mouse combination, to more

elaborate stereo displays and 3D input devices. Selection techniques for the latter will

be discussed in the next section since many of the issues are the same.

When using conventional desktop hardware (2D mouse input and standard CRT

output), the method we usually utilize for selection is ray intersection. We construct a

ray based at the focal point (viewpoint) of the camera through the point on the film

plane which corresponds to the position of the 2D mouse cursor. By testing for

intersections between this ray and all of the geometry in the scene, we can determine

which object the mouse cursor was "over" in the 2D projection of the scene, and select

that object (usually in response to a button press). We have found that this technique is

very effective on the desktop because from a perceptual point of view, it emulates the

"'point and click" behavior of 2D desktop windowing systems. Consequently, this is a

general method of selection for desktop applications that have both 2D and 3D

components. Also, since the mouse is a virtually noiseless and thus very precise input

device, we are able to select very small objects which project to only a few pixels on the

screen. As we will see, this is not the case for IVE input devices.

6.1.2 Virtual Reality

Just as on the desktop, selection techniques are used in IVE's to specify which

object(s) in the environment the user wishes to interact with. In the real 3D world, of

course, people "select" objects by touching them with their hands, or indicate a

particular object in the distance by pointing in its general direction. When designing

and implementing selection techniques for virtual reality applications, we can look to

this real world human behavior for inspiration. However, in VR applications, the

selection task is complicated by a number of factors, including limitations imposed by

input and output devices as well as by software techniques.

Page 11

Three-DimensionalUserInterfacesforScientificVisualization

In VR, user actions aremediated by input and output deviceswhich are often
imprecise and which either lack or distort perceptual cuesthat we take for granted in
the real world such ashaptic feedback, stereopsis,field of view, texture (both visual
and tactile), and sound. Display devices like the BOOM provide stereoscopicviews, but
somepeople arenot able to resolve depth from this type of display. Other head-
mounted display devicestypically provide fairly low-resolution images, making it
difficult to resolve small objects.Magnetic 6D trackers introduce problems aswell.
First, they arenot always accuratein many real environments becausethey are
adversely affectedby metallic objectsand electronic devices in the physical
environment. This cancausesignificant registration error between the actual and
displayed position of the tracker. A number of techniques have beenproposed and
implemented to correct for static distortions (those that do not changesignificantly
over time) of this type [5][16][17], including a method developed here at Brown [18]
(seeAppendix A for a discussion of thesemethods).

Secondly, the data reported by magnetic trackers is somewhat noisy, so even
when they areheld perfectly still, the 3D cursor in the sceneappears to randomly jump
around. The magnitude of this noise in our tracker is approximately 0.1". The
combination of hardware and software used to convert magnetic fields into position
and orientation values that canbe used by our software introduces lag into the system.
This results in a delay between the actual tracker movement and the display update in
the IVE. As shown in [30], lag contributes significantly to error.

On the software side, the selection tests used by most virtual reality applications

consist of precise, mathematical tests (e.g., ray intersection or point enclosure). While

we have found that these seem to work well for desktop applications, they are not

nearly as successful in IVE's. As our pilot studies have shown, this is in part due to the

physical limitations of the tracking and display hardware we use. However, there may
also be more subtle phenomena at work. For example, since IVE's strive to provide an

experience which mimics many of the perceptual qualities of our real-world experience

(including stereopsis, wide field of view, etc.), users of IVE applications may thus

presume that they can interact with objects in an IVE in the same way that they interact

with objects in the real world. Unfortunately, computers are not yet adept at inferring

user intentions exclusively from the kind of vague indications which humans are

accustomed to using for communicating with one another in the real world (pointing,

gesturing and speaking, for example). As a result, designing effective selection
techniques for VR applications is a tricky process. Our general design methodology has

been to look to the real world for examples of how people select, indicate or

manipulate objects, and transfer qualities of these interactions into software techniques
in an IVE. Often, the resulting interaction technique in an IVE is very different from its

real world source since the software technique must both cope with limitations of the

hardware devices, as well as exploit the "magical" properties of an WE (such as the

ability to manipulate objects at great distance, which can not easily be done in the real

world).
In the following sections, we will describe the most successful of the techniques

that we have implemented. We are also conducting informal user studies of these

techniques which are helping to guide our designs. These studies are discussed in a

later section of this report.

Page 12

Three-DimensionalUserInterfacesforScientificVisualization

6.1.2.1 Virtual Input Devices and Physical Props

A virtual input device in an IVE is analogous to the mouse cursor on the desktop.

It is a piece of geometry which represents the state of the input device(s) currently

being used. In the case of a single 3D tracker input device, the virtual input device

(VID) might be a simple crosshair cursor (Figure 2a). Generally, the appearance of a

VID depends on a number of factors, including the type of physical input device, the

task it is being used for, and any physical modifications that have been made to the

device itself (props). Some of the selection and manipulation techniques that we have

implemented were motivated by observations of how people operate with tools in the

real world and are implemented with these metaphors in mind. Therefore, when we

have felt it appropriate, we have used props to emphasize the metaphor. In other

research [21], props have been shown to aid users' understanding of user interfaces for

virtual reality applications.

We make use of a number of different props in our lab, including a drumstick and

a ski pole handle. We modify the geometry of the VID to suggest the shape of the prop

(Figures 2b and 2c). Though this is not strictly necessary, it is often helpful because a

user can more easily correlate what she sees in the IVE with the physical sensations she

perceives of the actual object in her hand.

b c

Figure 2: Three types of virtual input devices, a) a simple crosshair cursor; b) a cone (used
with the drumstick); c) a cylinder (used with the ski pole handle)

6.1.2.2 Touch

In terms of borrowing ideas from the real world, this might be considered the

most straightforward selection technique since humans are very familiar with touching

objects first in order to manipulate them. From an implementation point of view, the

input to this technique is also fairly simple, requiring only a 3D position (e.g., from a

tracker) and a means of signaling to the application when to select an object (e.g., a

button press, voice command, etc.). We have implemented two variations of the touch

selection technique in our system. In the first, the position of the tracker determines the

placement of the 3D cursor used for the selection test. When the 3D cursor is placed

inside the geometric boundary of an object, that object can be selected by pressing a

button on the tracker. We may use other input methods such as speech recognition to

replace the button as a way for the user to signal selection. This technique is similar to

touching objects in the real world, except that there is no haptic feedback (i.e., subjects

Page 13

Three-DimensionalUserInterfacesforScientificVisualization

can not feel the object in the virtual world). One drawback of this technique is that it
requires that the desired object be within reach. If the object is out of reach, then the
subjectmust first navigate to the vicinity of that object in order to selectit, and the
selection task thus becomesa two-step process.

The secondvariation was inspired by observations of glassblowers who
manipulate objects at a distance with long sticks so asnot to be burnt by the hot glass.
In our implementation, we use the drumstick prop, which emulates the glassblower's
tool, and place the 3D cursor at the end of the corresponding VID in the virtual
environment. Using the drumstick increasesthe distance from the user that objectscan
be selected,but may make it more difficult to selectobjectsat closerange due to the
awkwardness of holding the stick in thesepositions. It is still not clear which of these
techniques is better overall, but they clearly eachhave particular strengths and
weaknesses.User studies will, of course,help to determine which approachesarebetter.

Note that due to noise in the position values reported by the tracker, coupled with
normal jitter in the user's hand, the VID in this technique (and in others) appears to
jump around even when attempting to hold it perfectly still. This phenomenon
indicates that objectsmust be larger than someminimum size in order to be selectable
with this technique (or that the technique itself must be modified). The pilot studies
described later attempt to define this threshold. In the secondvariation, sincethe
orientation of the tracker influences the position of the end point of the VID which is
used for the selection test, this technique is susceptible to errors from noise in the
orientation of the tracker aswell aspositional noise. In practice, these factors present
severeusability problems which we have attempted to alleviate by modifying the
technique (seethe technique described in the next section).

Testing whether a given input point is within the geometric boundary of an object
canbe computationally very complex. To reduce this complexity, we can usea
simplified geometric representation for objectsin the selection test. In our first
implementation, we used a spherescaledto the 3D extent of the object.With this
approximation, asimple analytic test could determine roughly when the cursor was in
the vicinity of the target object.However, this simplified technique posed problems
when the actual geometry of the visible objectwas very different from a sphere (e.g.,if
the object is convex).Currently, we are using a polygonal collision detection system
called "I-Collide" developed at UNC, Chapel Hill [11],which canaccurately detect
exact collisions between aVID (representedby a geometric object) and the objects in
the sceneat interactive rates.

6.1.2.3 Touch Plus Intersection Ray

In our evaluations of the touch method described above, we found that even

though it seems like a very natural technique, and seemed to work fine for selecting

large objects, it is nearly impossible to use it to select small or narrow objects. The exact

minimum size depends on a number of factors which we have attempted to quantify in

our user studies described later. We have augmented the touch technique to remedy

this shortcoming. In the basic technique, we simply test whether the cursor is inside the

geometric boundary of each object (using either the simple spherical test or the true

collision detection method). Due to the noise in the tracker and instability in the user's

Page 14

Three-Dimensional User Interfaces for Scientific Visualization

hand, this technique is extremely susceptible to the effects of temporal aliasing. Since

there is no haptic feedback in this system to alert the user that she has touched a given

object, the VID is allowed to pass through any objects. If the frame rate is not

sufficiently high, or if the noise in the tracker and user's hand is significant compared

with the size of the target object, there may be cases when the user feels that she has

placed the cursor in the correct position, but still can not select the object. This situation

most often occurs when at time t, the cursor is either inside the object or just to one side

of it (Figure 3). Then, at time t+ 1, the cursor has passed either outside the boundary of

the object or to the opposite side. In the touch technique, when the button is pressed at

time t+l, the selection test obviously fails 5 (it can still succeed in some cases if the

approximate spherical test is used). However, if we consider the line segment between

the sample point at time t and the position of the tracker at time t+l, we can determine

which object the cursor passed through by looking for intersections between this line

segment and all of the objects in the scene. When the button is pressed at time t+l, we

select the appropriate object.

b +

intersection :
point

::: . ..

time t time t+l time t+2

Figure 3: Augmenting the touch selection technique. At time t, the cursor is either inside the

geometric boundary of an object (a), or just to one side (b). At time t+1, the cursor is

outside the object (a), or on the opposite side (b). Finally, at time t+2, the cursor may

have entered a second object (c). The dotted line segments in b and c are tested for

intersection with the object.

Adding this heuristic does not by itself quite make a successful technique because

if the user waits until time t+2 before pressing the button (which is likely considering

each frame is displayed for less than 0.1 second), then the line segment between the

two sample points may not intersect any objects. We have thought of two possible

solutions to this problem. First is to "remember" the last object that was intersected for

some time interval (1/2 to one second) during which any button press will select that

5. It is also possible that at time t+l, the cursor has entered the boundary of an adjacent object, in which

case, that object would be selected instead of the intended one.

Page 15

Three-Dimensional User Interfaces for Scientific Visualization

object. This method would still fail if the time between frame updates was longer than

the memory interval. This will not occur in an IVE because the frame rate must be

higher than 10 Hz.

Second, we might use a spatial measure to determine which object to

"remember." That is, until the cursor travels more than a certain distance away from

the last intersection point, a button press will select the last object that the cursor

passed through. Of course, both the length of the time interval and distance travelled

by the cursor should be determined by user studies. While we have not yet determined

the optimal parameters, our pilot studies do indicate that the addition of these

heuristics greatly improves the usability of the touch technique.

6.1.2.4 Laser Pointer

This technique gets its name from real laser pointers which are used in darkened

rooms to point out distant objects. It uses ray intersection to perform selection similar

to the desktop selection technique described earlier. In this technique, however, the

base point and direction of the selection ray are determined by the position and

orientation of the tracker, respectively. The ray points down one of the principal axes of

the tracker's coordinate system (we have chosen the z axis). We generally use this

technique with the drumstick prop, holding it as if it were a laser pointer. The physical

prop reinforces this metaphor.

In our pilot studies, we found that this technique, though easily learned,

presented severe problems when trying to select small objects even at close range. The

noise from the device coupled with the inherent instability in one's hand causes the

direction of the intersection ray to fluctuate by as much as +5 degrees. At a distance of

three feet, this error amounts to 6.25 inches, suggesting that objects any smaller than

this are effectively unselectable at this distance. The techniques we describe below
introduce methods to reduce the adverse effects of tracker and hand noise.

6.1.2.5 Target (Laser Pointer from Eye)

The target technique is also based on ray intersection, but borrows even more

from the 2D desktop techniques than the laser pointer. In this technique, we cast a ray

from the viewpoint, controlled by the position of the user's head, through the 3D

cursor in the IVE, determined by the position of the tracker. This technique was

inspired by and is similar to looking at a target through the sight on the barrel of a gun,

or to holding up one's thumb to measure the size of a distant object. Although there is

still noise in the position of the tracker, and jitter in the user's head and hand, we have

observed in our pilot studies that the distance between the head and hand, which

determine the basepoint and direction of the intersection ray, respectively, do in fact

reduce the overall error in this technique (compared with the laser pointer which is

adversely affected by both positional and rotational noise in the tracker). Given the

absence of haptic feedback in our system, users may also find it more "natural" to

select objects from their point of view than from their hand (this may be similar to the

decreased accuracy of shooting a firearm "from the hip" compared with using the sight

on the barrel).

Page 16

Three-Dimensional User Interfaces for Scientific Visualization

When using this technique, we must also consider the fact that a stereoscopic

image of a scene is produced from two separate eye points (cameras) simultaneously

that are positioned side by side to match the physical configuration of the human eyes.

Since the base point of the intersection ray in this technique is controlled by an eye

point, we must decide which eye point to use. We know that most people have a so-

called "dominant" eye which they favor over the other when performing tasks in

which a single point of view is required. A simple test can determine which eye is

dominant, and we can adjust the technique appropriately.

6.1.2.6 Aperture

This technique augments the target technique with an additional feature to help

alleviate the adverse effects of error from noise. The visual representation of this

technique consists of a circular aperture centered on the cursor point which is marked

with a crosshair (Figure 4a). We have experimented with two uses of the aperture. The

first (Figure 4c) places the aperture at the location of the 3D cursor, and aligns it with

the film plane of the camera viewing the scene. As with the target method described

above, a user places the aperture "over" the object(s) she wishes to select, then presses
the button on the tracker. This configuration can be used with or without the drumstick

prop, and the VID is modified appropriately.

a c ,7
w

.4 4" •

• |

i

• "conic, ,. _r

aperture .-'volume .-'J"
orcle .-" .-''"'"

eye. .,..(_.,..-"

point .- .._
'_""" _VID

d

_a "a •

s m t

aperture - "" ' 's • _ m

• conic,
circle . .-" , ,'

._ volume , •.............. "-.-.--'- ->

VID

Figure 4: The aperture technique, a) The basic aperture geometry, b) Small circles represent

the positions of intersection rays cast through the center of the aperture and

representative points on the perimeter, c) The conic volume described by the viewpoint
and aperture, d) The conic volume described in the "flashlight" configuration. Both c and

d are shown with the drumstick VID. In our implementation, the conic volume is semi-
infinite.

Page 17

Three-Dimensional User Interfaces for Scientific Visualization

In the second configuration (Figure 4d) we use the drumstick prop and place the

aperture geometry at the end of the stick, but this time align it with the plane

perpendicular to the axis defined by the stick (similar to the intersection ray in the laser

pointer technique).

In either configuration, the combination of a direction vector and the aperture

circle defines a conic volume in space. In the first configuration, the apex of this cone is

coincident with the eyepoint of the viewer. Any object which appears from the user's

point of view to be inside the circular aperture can potentially be selected. In the

second configuration, the effect is more like a flashlight sweeping through a region of

space; any object "illuminated" by the flashlight is potentially selectable. A similar

technique using the flashlight metaphor was implemented by Liang [29] in the MR

Toolkit system, but the from-eye version was not implemented.
The radius of the cone can be easily modified in the first configuration simply by

drawing the VID closer to or further from one's eye. In the "flashlight" configuration,

however, an external control is needed to change the radius of the aperture circle.

Currently, we adjust this parameter from a command line interface, but we have

envisioned a number of possibly more attractive possibilities including using voice

recognition, a hardware dial on the physical input device, or twisting the stick around

its long axis (the central axis of the conic volume). We did try this last technique, but

quickly discarded it after we found it very difficult to continue pointing the stick in the

same direction while twisting it.

Intuitively, the objects that the aperture-based techniques should select are those

that fall within the conic volume. This can be expressed as a test for intersections

between the conic volume and all of the objects in the scene. We have tried the

following techniques:

• Ray intersection from the base point through center of aperture (by itself, this is a

degenerate case equivalent to the laser pointer or target techniques).

• Ray intersection from the base point through representative points on the aperture

circle (Figure 4b).

• Project vertices and edges of objects in the scene onto the plane defined by the

aperture circle.

• Using I-Collide to detect interpenetration of the conic volume with the objects in
the scene.

I-Collide obviously is the technique of choice because it returns an exact solution,

though in some complex scenes (e.g., with isosurfaces), it may be too slow because of

the large number of polygons. In most of the simple scenes we have used it in,

however, I-Collide seems to work very well and at interactive rates.

The first two tests above use the same ray intersection tests that the laser pointer

and target techniques use. Computationally, ray intersection is inexpensive compared

with projecting vertices and edges of objects in the scene onto a plane, but can easily

miss objects that do lie within the boundary of the aperture circle and thus should be

selected. The vertex and edge projection tests reduce the 3D intersection test to a 2D

problem. Once the vertices and edges are projected onto a plane, we need only

determine whether they fall within the circle. However, this technique is

Page 18

Three-DimensionalUserInterfacestor Scientific Visualization

computationally very expensive and currently can not be used in complex scenes at
interactive rates without hardware acceleration.

Since the aperture technique defines a volume of space, it is possible that we may

have multiple candidate objects for selection. In the event that more than one object lies

inside the conic volume, we may either select all of the objects, or identify a single

object for selection based on some criteria. In practice, there are a variety of

mathematical tests to determine which of a number of objects to select. One possibility

is to choose the object whose center point is closest to the base point of the intersection

ray (either the viewpoint or location of the tracker, depending on the particular

configuration in use). This method presents a problem, however, when a user attempts

to select an object near the center of the aperture, but a closer object is partially inside

the edge of the circle. In this case, both objects are candidates, but the second, closer

one will be selected because it is closer to the viewpoint.

Another possibility for choosing a single object among many potentially

selectable objects, and one that appears to be the most intuitive, is to select the object

closest to the ray passing through the center of the aperture circle. Note that this object

may not be the closest object to the viewer. This method recognizes the user's intuition

(backed up by anecdotal evidence in our user studies) that the more "centered" an

object is in the aperture, the more likely that it will be selected.

A third option is to select an object based on its apparent size (e.g. select the

largest object in the aperture). In practice, this is not such a good option, since it may be

difficult to select a small object next to a larger one. Also, if two objects of roughly the

same size are at different distances from the viewpoint, their apparent size will, in a

perspective projection, be very different as well. Using the size test to determine which

object to select may work in this case, but a test based on distance would probably

work just as well. As mentioned, in practice, we have found that the distance test is

more appropriate than an apparent size test.

Note that this technique is also subject to modification based on each user's

dominant eye.

6.1.2.7 Glove-Based Interface for Aperture

Though we have not implemented it yet, we have designed a glove-based

interface to the aperture technique which we feel is more natural than the two

configurations described above. This technique utilizes the posture recognition

software in our system to identify when the user has shaped her hand in a pinching

posture. When this posture is recognized, the aperture geometry is drawn between the

index finger and thumb. As with the first configuration of the basic aperture technique,

the aperture is aligned with the film plane. Two advantages to this technique are that

the user does not have to hold a prop, and also that the size of the aperture can be

adjusted simply by moving one's fingers further apart or closer together.

6.1.2.8 Orientation

The orientation selection technique selects objects in an IVE by comparing the

orientation of the tracker with the orientations of objects in the scene. Any objects

P_el9

Three-Dimensional User Interfaces for Scientific Visualization

which approximately match the orientation of the tracker are candidates for selection.

The inspiration for this technique was the observation that in the real world, when we

attempt to grab an object with our hand and fingers, we first must configure our hand

so that it conforms to the part of the object we reach for (e.g., the handle of a cup, the

middle of a bar, etc.). At a very gross level, the task we perform is matching the

orientation of our hand with that of the target object. We can approximate this with a

simple mathematical test.

According to this technique, the shape of an object plays a direct role in

determining how it can be selected. In the UGA system, primitive objects initially have

a canonical uniform scale. Given this property, the scale components of an object's

current transformation matrix (CTM) can reveal information about it's shape. Long thin

objects and flat objects can be easily identified by significant differences in their x, y

and z scale components. Of course, objects which are long and thin but which are not

aligned with a principal axis will not be so easily identified. In general, determining the

shape of an object may be a harder, more subjective problem that involves at least an

analysis of the object's geometry, and perhaps even some higher-level semantic

knowledge about important features of the object (such as the handle of a cup or knob

on a door). However, for some simple cases, we can get reasonable behavior under the
current scheme.

a

Figure 5: Orientation selection technique. For this technique the cursor geometry is a pair of

parallel plates which indicates the current orientation of the tracker. This cursor may be

used by itself or in conjunction with a VID such as the drumstick, a) shows the cursor
orientation that would select long, skinny objects like the bar of the object in the middle

of the figure, b) shows the cursor orientation that would select short, wide objects, like

the disc on the bar. The ball at the end of the bar presents something of a problem for

this selection technique. This can be remedied by adding a heuristic which identifies

uniformly-scaled objects and compares distance to the cursor rather than orientation.

In our application, we tested this technique on the rake widget, which consists of

a bar (a long thin cylinder), a slider on the bar (a flattened cylinder), and a ball at one

end of the bar (a small sphere). We modified the geometry of the VID for this technique

so that the orientation of the tracker was clearly represented (two parallel flat blocks

Page 20

Three-Dimensional User Interfaces for Scientific Visualization

placed side by side). As the user rotates the tracker, so does the cursor rotate and thus

indicate the kinds of objects that can be selected (Figures 5a and 5b).

Note that if this selection technique uses only the relative orientations of the

tracker and objects in the scene to determine which objects it will select, and not their

respective positions, it can select objects that are a significant distance from the tracker

(or even outside the view). In our initial tests, we found this behavior unnatural. To

cope with this drawback, we added the requirement that the tracker had to be within

some reasonable distance from an object in order to select it, regardless of the similarity

between their respective orientations. Checking distances in this way may also be

required in order to choose among multiple candidates for selection when the scene is
crowded.

The orientation of objects which are uniformly scaled, like the sphere at the end of

the bar, is not readily apparent. In these cases, this selection technique uses only the

distance measure to determine selectability. In this particular instance, a glove-based

posture recognition interface might be more effective - the user would simply shape

her hand to fit the desired object. Such an interface might compare the convex hulls of

the user's hand and nearby objects and pick the one with the closest match.

6.2 Manipulation

Manipulation is a generic term which describes any of a number of ways to

interactively modify the state of objects in a computer application. Manipulation in a

3D graphics context includes applying affine transformations to objects, discrete actions

such as pressing buttons or complex actions like gestures or speech acts which are

interpreted by a user interface as modifications of primitive objects. The key concept is

that manipulation implies interactivity, and that therefore a user interface can be

characterized by the types of manipulations it requires one to perform.

6.2.1 Direct vs. Indirect Manipulation

Most types of manipulation in user interfaces can be categorized as either direct

or indirect. In his classic article on the subject [37], Shneiderman explains that a direct

manipulation user interface is one in which the human user is presented with a visual

model of a problem domain, and that the interaction dialog includes "continuous

display of the object of interest" and "rapid, incremental, reversible operations whose

impact on the object of interest is immediately visible." This definition was proffered in

1983, when the art of graphical user interface design was still in its infancy. It stands in

stark contrast to indirect manipulation found in batch, menu or command-line

interfaces which generally require users to maintain an abstract mental model of a

problem that conforms to a specific specification language (e.g., the command

keywords and syntax). Since this first definition of direct-manipulation, many others

have presented their own versions. For example, Laurel [28] stresses that direct-

manipulation interfaces present the "continuous representation of the potential for
action."

Direct-manipulation interfaces, when implemented well, give users a sense of

being in control of the application, and reduce the cognitive distance between a user's

Page 21

Three-Dimensional User Interfaces for Scientific Visualization

intentions and the resulting physical actions she must take. By relying more heavily on

visual perception and cognition (through the use of icons and other graphical elements)

than on abstract thought processes required by text-based command interfaces, direct-

manipulation interfaces can help users be more productive.

As we have experimented with different interaction techniques and widgets for

3D graphics applications, subtle variations of direct-manipulation interfaces have

emerged. In its basic form, users directly control the object of interest and there are no

side-effects. This type of direct-manipulation occurs in a 2D or 3D graphics application,

for instance, when a user drags a shape or geometric object across the canvas or from

one point in space to another. If manipulating this object has additional effects on other

objects in the environment, then it is itself a component of the user interface. In this

case, though the user has directly manipulated the widget, she has also indirectly

manipulated some other part of the environment. Thus, direct-manipulation interfaces

often incorporate and rely on indirect manipulation.

All of the widgets described below have significant direct and indirect

manipulation elements. Some of the interaction techniques described earlier, however,

do not provide a visual representation of themselves beside their effect on the scene.

The use of predictive feedback, such as highlighting the object(s) that would be selected

if the user pressed a button, for example, do provide a sense that the user is wielding a

tool which can somehow modify the environment.

Designing good direct-manipulation interfaces is a tricky business, and requires

deep insight into the exact nature of the tasks for which they are developed. A well-

designed direct-manipulation interface cart greatly help task execution, but a poorly-

designed one can actually be more difficult to use than a non-graphical, indirect-

manipulation interface. Thus, direct-manipulation does not necessarily equate with

ease of use [23].

6.2.2 Types of Manipulation in 3D Applications

The most common types of manipulation tasks in 3D graphics applications are

inherently geometric. That is, they involve changing the current transformation matrix

(CTM) of 3D objects. Modeling, animation and scientific visualization applications all

provide techniques for modifying the position, orientation and scale of objects, but the

exact interaction techniques and widgets that one uses differ from application to

application. Other attributes may also be manipulated, such as the color or

transparency of an object, or higher-level attributes like the spacing of a gridded floor

plane, or the number of streamlines on a rake in a scientific visualization application.

However, whatever the parameter, a 3D user interface for modifying it almost always

involves some kind of geometric manipulation. In the following sections, we discuss

some of the widgets and techniques that we have developed for modifying parameters

of 3D objects.

6.2.3 Position and Orientation Techniques

Positioning and orienting objects in 3D are two forms of manipulation that are

widely used in 3D graphics applications. We designed the techniques described in the

Page 22

Three-DimensionalUserInterfacesforScientificVisualization

following sections for use with conventional desktop hardware: a 2D mouse and CRT.

Thus, these techniques aim to overcome many of the difficulties which result from

using 2D devices for 3D interaction tasks. We have begun to use these same techniques

in VR, and have found that while some are still useful, others must be (and have been)

abandoned or at least significantly redesigned in order to be usable in VR. Finally, the

selection techniques described above each suggest their own unique form of

manipulation once an object has been selected. The final subsection below describes

these manipulation techniques.

6.2.3.1 Interactive Shadows

When using desktop hardware, the default positioning technique in our system is

direct-manipulation screen-aligned translation (objects move in the plane parallel to the

screen plane). However, since this is a 2D mouse-based technique, the user must

change the viewpoint to move objects in other planes. To move objects in three-space

with the 2D mouse without changing the viewpoint, we have added "interactive

shadow" widgets (Figure 6) to this environment. These shadow objects are generated

for every 3D object, provide a valuable depth cue, and can be displayed on any axis-

aligned plane. Further discussion of this tool is in [20]. Note that in the figure, the

shadows on the floor plane do not contain all of the detail present in the widgets above

them. This is done in part to decrease the number of polygons in the scene (since the

shadow widgets are geometric copies of the widgets), but also because research has

shown that human perception does not necessarily requires shadows to be exact [41].

Our initial attempts to use the shadow widgets as interactive tools in VR have

been relatively unsuccessful. Since the input devices we use in VR provide the

additional degrees of freedom that are lacking on the desktop, the shadows are no

longer necessary as manipulation tools. They do, however, still provide a valuable

depth cue. The major problems with the shadows as manipulation tools in VR is that

they can be difficult to select, at least with the touch selection technique. Also, since the

input device is not physically constrained to the same degrees of freedom as the

shadow, users often feel disconcerted when the shadow does not exactly follow the

position of their hand. We expect that the shadows may be somewhat more usable with

the target and aperture techniques, and plan on testing this in the near future.

Page 23

Three-DimensionalUserInterfacesforScientificVisualization

Figure 6: Interactive shadtnos. The shadow widgets for a cutting plane and a rake are

projected onto the floor plane. The position of either probe can be modified by dragging

the probe itself or its shadow. Manipulating a probe translates it in a plane parallel to the

film plane of the camera viewing the scene; manipulating its shadow widget moves both

the shadow and the probe in a plane parallel to the shadow plane. Note that the

shadows also provide a useful depth cue.

6.2.3.2 Object Handles

Some geometry, such as the Shuttle's fuselage, can easily obscure the shadow

widgets projected onto a floor or wall and thus render them unusable. To address this

problem, we have implemented another technique for moving objects in 3D with a 2D

mouse, called "object handles" (Figure 7) [12]. With this technique, we attach three new

objects (in our case, simple line segments) to the 3D object and align them with the

principal axes of world coordinate system. Dragging one of these handles translates the

3D object along the axis defined by that line. These widgets offer much of the same

functionality as the "interactive shadows," but provide no depth cues. Their main

advantage over shadows is that they are always attached to the 3D object. If the 3D

object is visible, then so is the positioning widget.

Page 24

Three-Dimensional User huerfaces for Scientific Visualization

Figure 7: Object handles. The object handles widget is attached to a probe. The purple line
represents the current translation axis.

These widgets also provide visual feedback to user actions in the form of

projection lines and ghosting. A purple projection line 6, drawn when a user drags one

of the three handles, indicates the widget's restricted degrees of freedom. Also, a

ghosted copy of the handles widget is drawn in the starting location to indicate the

distance that the widget has been moved. When the user has finished dragging the

widget (indicated by a mouse up event), the projection lines and ghosted copy are both
undrawn.

6.2.3.3 Grid-Aligned Handles

Both the shadow and object handle widgets use axes in the Cartesian coordinate

space to help position objects more easily in 3D. We have also designed similar

techniques which constrain the movement of a probe to features in the underlying

computation grid. We have implemented a version of our object handles, called "grid-

6. The projection line is light grey in our monochrome BOOM display.

Page 25

Three-Dimensional User lnlerfaces for Scientific Visualization

aligned handles" (Figure 8) [19], which allow constrained translation along axes in the

computational grid. With this technique, it is straightforward to move objects along the

curved surfaces of a CFD object such as the leading edge of the Shuttle's wing.

Figure 8: Grid-aligned object handles. The grid-aligned object handles widget is attached to
a probe.

The grid-aligned handles work by tracing out lines in the computation grid from

the point in the grid closest to a given sample point. An added benefit of these widgets

is that they provide a visual representation of the local structure of the grid in the area

surrounding the sample point. Users may exploit this information to gain a better

understanding of the dataset and the behavior of visualization techniques.

Apart from its slightly different visual representation, this widget behaves

identically to the object handles, complete with projection lines and ghosting.

6.2.3.4 Data-Space Handles

We have also developed some interaction techniques based on the actual data

being visualized. For example, the vector probe widget (Figure 9) consists of a grey

spherical sample point, an arrow representing the direction of the vector field at that

point, and a disk representing the plane perpendicular to the vector. By dragging the

Page 26

Three-Dimensional User Interfaces for Scientific Visualization

arrow component, the sample point can be moved along a streamline calculated at that

point in the flow field. The disk is used to move the sample point perpendicular to the

flow, allowing the user to explore nearby streamlines in the flow field.

Figure 9: Data-space handles. The data-space handles on a point probe widget include a
blue arrow and a reddish disk.

When we use this same general probe widget to visualize scalar data, the vector

component displays the gradient of a scalar field. Pulling the vector changes the value

of the isosurface that passes through the sample point, and translating the red disk

moves the sample point along the isosurface itself. Note that moving the disk does not

change the level of the isosurface, just the initial seed point from which the isosurface is

computed. Since we are using an interactive isosurface algorithm [33], moving the

probe in this way allows us to explore different regions of a single isosurface.

6.2.4 Direct Manipulation Visualization Techniques

We have also explored other direct manipulation techniques for modifying the

position of sample points in a dataset. Normally, one describes a streamline by

specifying a sample point from which a path is calculated and integrating forward

through the dataset. Streamlines may also be constructed by integrating backward

Page 27

Three-Dimensional User Interfaces for Scientific Visualization

from a sample point. We have implemented a streamline which serves not only as a

visualization tool, but also as an interactive positioning widget. By clicking anywhere

on this direct manipulation streamline, we specify a new position for the sample point,

represented by a small sphere, which describes it. We can then drag this sphere using

any of the manipulation techniques described above and the streamline recalculates in

real time, integrating both forward and backward by the appropriate amount to

maintain the original length of the streamline.

With this technique, users can manipulate a streamline very precisely in

particular regions of interest that might otherwise be difficult to reach. For instance, if

an interesting feature is observed at the very end of a given streamline, one can simply

click on the streamline right near the feature and move it around with fine control.

Without this ability, one can only modify the position of the sample point at the

beginning of the streamline, where even small movements may cause very large

changes in the streamline near the end.

We have also applied this same technique to translate rakes of streamlines. In

addition, rakes can be rotated and scaled about the new sample points. In our system,

we use a separate mouse button to "twist" the rake about the selected streamline. This

has the effect of keeping the picked streamline constant but modifying the neighboring
streamlines.

6.2.5 Manipulation after Selection in Virtual Reality

Each of the selection techniques described earlier that we have designed for use in

VR represents a unique method for selecting objects in a scene. However, selection is

only one task in a dialog that a user holds with an application. After selecting an object,

a user will often modify that object in some way, either by transforming it, or changing

some other parameter such as its color or transparency, or, in the case of a scientific

visualization application, perhaps the visualization technique it generates. We have

implemented a set of transformation techniques to accompany the selection techniques

described above that allow a user to modify the position and orientation of objects once

they have been selected.

The guiding principal behind these manipulation techniques is known as the

principal of least surprise. This principal states very simply that what actually happens

as a user interacts with a system is exactly what the user expects to happen. In the case

of the selection techniques, an object has some relationship with the user's hand (the

cursor in the IVE) at the time of selection (e.g., the button press). During the subsequent

manipulation, this relationship should be maintained as closely as possible. One way to

look at this is from the point of view of the tracker device which, like any other 3D

object in an IVE, has its own coordinate system. At the moment of selection, we can

determine where in this coordinate system a selected object lies, and maintain this

relative position and orientation throughout the following manipulation.

Unfortunately, exactly maintaining this relationship is not always possible. When

the selected object is itself constrained to move only along a single axis or in a plane,

we must project the position and orientation of the tracker onto this lower-dimensional

space. The most obvious way to do this is to find the closest point in the constrained

space to the reference position defined by the tracker. This approach seems to work

P_e28

Three-Dimensional User Interfaces for Scientific Visualization

very well in our applications.

6.3 Navigation

To date, we have experimented with some navigation techniques both on the

desktop and in VR, but have yet to fully explore the range of possible navigation

interfaces. On the desktop, we mainly use a combination of techniques which are

accessible via the right mouse button in conjunction with the shift and control keys on

the keyboard. We use the right mouse button by itself for virtual sphere rotation about

the center of the scene (the center point can change); with the shift key, we zoom in and

out (by changing the size of the film plane); with the control key, we pan the camera in

the plane parallel to the film plane; and by simultaneously depressing the shift and

control keys and clicking on an object in the scene we focus the camera on that object

(with a smooth animated sequence similar to that found in the Information Visualizer

from Xerox [32]). In more recent work, we have developed an interface which affords

these same controls, but without the use of the modifier keys (described in [45]). In this

interface, the default behavior of the right mouse button is panning the camera.

However, by pausing slightly after clicking the right mouse button, we get a

combination of zoom and pan in which left-right motions map to zoom, up-down to

pan 7.

In our virtual reality application, we exploit the built-in degrees of freedom of the

BOOM to provide most of the navigation. In most cases, this suffices because the

majority of the objects that we interact with are at close range. In case we need to move

beyond the somewhat limited range of the BOOM, however, we use the two buttons to

"fly" forward and backward along the viewing axis. Generally, we "fly" at some

constant velocity, but we have experimented with using an acceleration constant as

well so that we can travel larger distances more quickly. We have yet to perform formal

evaluations of any of these techniques, so we can not make conclusive statements about

which techniques are better. We intend to explore this area of research further.

6.4 Complex Widget Designs

Each of the interaction techniques and widgets described so far was designed for

a single purpose, such as modifying the position or orientation of an object, specifying

which object in a scene is selected, or manipulating the viewpoint. We have also

experimented with more complex, hybrid user interfaces which allow users to

simultaneously visualize and modify multiple parameters of an object, including non-

spatial quantities.

As with the interfaces described so far, the design of a complex widget can be

very different for desktop and VR applications. In our experience, the complex widgets

that we designed for desktop use consist of many small, grabbable parts that are

usually fairly easy to pick with a 2D mouse. In our preliminary trials with these same

widgets in our IVE, we have found that it is very difficult to grab these small parts

using the available input devices. This has led us to reconsider the design of the user

7. Even though this means that we can only pan in one direction, this implementation seems to work well
for the SKETCH application (it has yet to be supported by user studies).

Page 29

Three-DimensionalUserInterfacesforScientificVisualization

interface for IVE's. Part of this redesign included implementing the new techniques for
selecting and manipulating widgets described above.In other caseswe have either
redesigned existing widgets, or decided to do away with them entirely in favor of other
approaches.

It is important to remember that though components of thesewidgets sometimes
represent abstract quantities, they present thesequantities in spatial terms. Thus, users
may modify quantities by manipulating the position or orientation of the 3D widgets
which represent them. In somecases,the positioning and orientation techniques
described in the last section canbe used,but more often, a widget is designed with
built-in constraints so that componentswhich represent scalar values, for instance, are
constrained to translate along a single axis. If a quantity is bounded, the widget will
likewise be constrained to move within appropriate physical limits.

6.4.1 Generalized Probe

The "generalized probe" that we have designed for our scientific visualization

application provides a user interface to some of the parameters of the visualization

techniques that we support.

Table 1:

Number Color Tuft Streamline Isosurface

Zero-dimensional Numerical Colored Single Tuft Single Single iso-

(point) Probe Ball streamline surface

One-dimensional Gradient Colored bar Rake of Rake of Rake of iso-

(rake) rake tufts streamlines surfaces

(onion)

Two-dimensional Number Colored Hedgehog Multiple a

(plane) plane cutting rakes

plane

Three-dimen- Numbered Multiple Multiple Volume of a

sional (volume) points in cutting hedgehogs streamlines c

volume b planes b

a. With partial transparency, this option may provide local volume rendering, though we have not imple-
mented it in our system.

b. Works well only with a relatively low number of sample points.
c. There has been some research done on stream volumes, but we have not implemented this visualization

technique in our system.

Most of the visualization techniques we have implemented in our system are

generated by sampling single points in a dataset, calculating scalar or vector values,

and displaying some visual representation of the data. The positioning techniques

described earlier are designed to help scientists quickly place these sample points in a

dataset, but we also need methods for controlling collections of sample points as a

Page 30

Three-DimensionalUserInterfacesforScientificVisualization

group. To addressthis need, we developed the notion of a generalized probe which can
manifest itself asa zero-, one-, two or three-dimensional widget. This generalized
probe widget (Figure 10)is used to define the initial samplepoints for a variety of
visualization techniques including streamlines, rakes,hedgehogs,cutting planes and
isosurfaces.The design of the probe widget also includes components for modifying
parameters of these techniques.

Table 1 shows the range of possible visualization tools that canbe created using
the generalized probe widget. Someof the entries correspond exactly to commonly
used tools, such asthe rake of streamlines,or the colored cutting plane. Other entries
may require more esoteric visualization techniques to be useful.

6.4.1.1 Zero-Dimensional Probe

In its zero-dimensional form, this widget is a simple probe that samples a single

point in the dataset. We use the probe with data-space handles (Section 6.2.3.4). From

this point, we can choose to generate one of five visualization techniques: a number,

color, tuft, streamline, or isosurface. Multiple visualization techniques can be generated

simultaneously from a single sample point (though we have not yet devised a good

user interface for controlling this functionality). Users may then use any of the

positioning techniques described above to place this widget in the dataset. The direct-

manipulation, "grab-anywhere" interaction technique described earlier (Section 6.2.4)

applies only to the advected particle visualization technique.

6.4.1.2 One-Dimensional Rake

The one-dimensional widget is essentially the same as a rake tool commonly used

in real wind tunnels (usually a steel pipe with holes drilled in it at intervals to generate

smoke streams in an airflow). This widget produces a set of sample points at regular

intervals in Cartesian space along a line; it can be translated and rotated freely and can

be scaled along a single axis by translating the red ball at one end. Additionally, we

supply a resolution handle, the orange disk, to change the distance between sample

points. This resolution handle is free to move from one endpoint of the rake bar to the

center of the bar. The distance between the handle and the endpoint determines the

spacing between the sample points. One drawback to this method is that when the

handle is moved close to the endpoint of the rake, very small movements up and down

the bar can cause large changes in the number of streamlines. This non-linear behavior

can be corrected by simply mapping the position of the resolution handle to a linear

scale, but then one would lose the geometric correlation between the placement of the

handle and the spacing between the sample points. In an IVE, this slider approach has

a distinct drawback: Since the 6D tracker input device is not as stable as the 2D mouse

on the desktop, noise from the tracker or user's hand can make it difficult to precisely

set a specific number of sample points. Alternative interfaces, such as the dial menus

described later (Section 6.4.2), may be better approaches for tasks like this.

Page 31

Three-Dimensional User Interfaces for Scientific Visu',dization

Figure 10: Probes. Counterclockwise from left, the point probe with a streamline, 1D

probe with streamlines, 2D probe with tufts and 3D probe with color. Visualization

techniques are colored by velocity of the vector field from blue (slow), through green, to
red (fast).

Again, any of the visualization techniques listed earlier can be generated from this

set of sample points; advected particles produce the familiar rake of streamlines, the

color technique produces a colored bar, and the isosurface produces an "onion"-

multiple isosurfaces at different levels of the dataset.

6.4.1.3 Two-Dimensional Plane

The two-dimensional widget samples a set of points arranged in a regular planar

grid (similar to the one-dimensional widget). This widget can be translated and rotated

freely, and can be scaled independently in two dimensions, much like a 2D window in

a desktop-style graphical user interface (GUI). Also, the resolution of this widget can be

changed independently in each dimension. Note that we maintain continuity between

the different probes by using the same visual language for these handles. As with the

one-dimensional widget, the resolution handles exhibit non-linear behavior.

Using the color technique with this widget produces a cutting plane; similarly, the

Page 32

Three-DimensionalUserInterfacesforScientificVisualization

tufts produce a hedgehog. This widget can be confusing when the advected particle

technique is chosen, especially if the sample points are very close together in both

dimensions: the visual effect is something like a volume of streamlines, and is not very

intelligible (this may be more useful with transparency or "stream volumes").

However, if we reduce the number of sample points in one dimension, say down to

three, we effectively produce a widget which controls a set of three rakes as group. In

this configuration (Figure 11), we have a useful tool once again.

Figu re 11: 2D probe with streamlines. Properly configured, the two-dimensional probe acts

like a collection of one-dimensional probes which can be controlled in unison.

6.4.1.4 Three-Dimensional Volume

Finally, the three-dimensional widget generates a volume of sample points. It can
be scaled in three dimensions and has resolution sliders for each dimension as well.

Like the two-dimensional probe, this widget can produce very confusing visualizations

if not parameterized correctly. However, by choosing the color technique and adjusting

the resolution sliders so that there are lots of sample points in two dimensions and very

few in the third, we can produce a set of cutting planes that can be moved around as a

unit. One can imagine an alternate colored representation which utilizes volume

textures, but we have not implemented this. This particular technique may be useful

Page 33

Three-DimensionalUserInterfacesforScientificVisualization

for visualizing MRI data as well as fluid flows because it also has rich volumetric data

(just as fluid flows have regions of higher or lower pressure or temperatures, for

example, MRI data contains areas of differing density).

6.4.1.5 Interface to the Generalized Probe

In our desktop application, we provide a set of 2D buttons outside of the 3D view

for changing the probes from one dimension to another. When a probe changes

dimension, it fades from one representation to the next, thus maintaining visual

continuity. Another set of 2D buttons changes the visualization technique generated at

each sample point. When multiple widgets are being displayed simultaneously, the 2D

buttons only affect the last widget used. In this way, we can have many probes on the

screen, each in a different configuration and producing a different visualization

technique.

6.4.2 Menus and Buttons

Menus and buttons are standard components of 2D user interfaces for desktop

applications, and are often used as an interface to abstract parameters or commands

within an application. However, they introduce many problems when added to a user

interface in an immersive environment. 2D menus do not necessarily face the viewer,

making visibility difficult. Also, selection of menu items is generally made with a six-

dimensional device even though the items are arranged in a 2D array. The benefits of

menus and buttons are many, including the access they provide to changing the state of

objects or the environment, or to making abstract commands that do not have explicitly

visual semantics. Menus and buttons are ubiquitous in desktop GUI's because they are

relatively compact and easy to learn and use. However, care must be taken when

transferring standard 2D interface components like these into IVE applications.

6.4.2.1 Menus and Buttons in IVE's

A number of different types of menus have been implemented in IVE systems,

including a hierarchical menu in the "virtual wind-tunnel" [6], a panel with popup

menus in the 3DM application [7], "hands-free" menus [13], the menus on the virtual

tricorder developed here at Brown [43], as well as spherical (daisy) and dial (ring)

menus in HoloSketch [14] and JDCAD [29]. They all have problems, however. The
hierarchical menus in the VWT were modeled after 2D menus. When drawn in the 3D

scene, they appear oriented with the film plane and are quite large, usually taking up

most of the view, and thus obscure most of the virtual environment and the objects in it

(thus violating one of our design rules) 8. One chooses options from the menu by

pointing at them with a laser-pointer style selection tool. Hierarchy navigation is also

modeled after standard 2D menus and requires very good control over the pointer to

do it effectively.

8. It is possible to render these menus transparently (though this is not done in the VWT). However, this

approach is also problematic because the menu items can easily be confused with geometry in the back-

ground and can thus become difficult to read.

P_e34

Three-DimensionalUserInterfacesforScientificVisualization

The 3DM application developed at UNC is a rectangular array of 3D icons and

popup menus that can be "attached" to the user in the virtual environment. When

attached, it follows the user wherever she goes, and remains located near the waist line.

It can be moved around freely, and even detached from the user and left behind. The

3D icons represent tools, commands and toggles which are used to construct shapes or

change the state of the environment. Apparently, it is quite easy to lose this panel in the
IVE if the user detaches it.

Darken's menus use speech-recognition techniques for selecting menu items in an

IVE, and thus frees the user's hands for other tasks. However, as with many other

menu systems, the text of the "hands-free" menus must be visible in the 3D

environment at all times, and thus must occupy some part of the valuable screen space.

6.4.2.2 Spherical Menus

Spherical menus are inherently 3D structures and therefore show promise for IVE

applications. They operate as follows: the items in the menu are distributed on the

surface of a sphere (which itself is not necessarily visible) which is placed at the
location of the user-controlled cursor in the virtual environment. The menu items

become visible usually in response to a button event. By rotating the tracker in place (a

6D tracker must be used for this kind of menu), users point at the desired item and

release the button to activate it. However, it may be impossible to comfortably get at

some of the items because it is very hard to rotate the tracker a full 360 ° in a single

motion. In JDCAD, a clutch mechanism was implemented to alleviate this problem. By

pressing a button on the tracker, the user can temporarily suspend input from the

tracker, rotate her hand into a more comfortable position, release the button, and

continue pointing. One drawback of the technique is that after clutching, there is no

longer correlation between the orientations of the tracker and the cursor in the IVE.

Also, the interaction dialog becomes complicated by multiple button events.

6.4.2.3 Dial Menus

We have implemented a kind of dial menu (Figure 12) in our application that may

be more useful than these other types of menus. Our dial menus are generally

associated with specific objects in the 3D scene, such as 3D widgets like the rake, which

have many parameters. As with conventional 2D menus, only the root of a dial menu is

initially visible. When the user clicks on the root, the associated menu items are drawn.

Items are placed at intervals on a circle centered at the menu's root, and can either be

text or graphic icons. Both visually and behaviorally, these menus are very similar to

the "marking menus" developed by Kurtenbach and Buxton [27] and iml_lemented in
rum nthe Alias/Wavefront Studio Version 7 modeling and a " atio software . The main

differences between the dial and marking menus are analogous to the differences

between 2D and 3D widgets. Whereas marking menus are elements of a 2D interface,

and behave similarly to pop-up menus, the dial menus coexist in a 3D environment

with other geometry, and can be semantically attached to specific objects in the scene.

9. "Marking menus" are an extension of the original "directional" pie menus [91, and, as Buxton asserts, are

superior to linear pull-down or pop-up menus because they exploit users' spatial memory.

Page 35

Three-DimensionalUserInterfacesforScientificVisualization

Dial menus can be used either on the desktop with a 2D mouse or in an IVE with a 3D
tracker.

Unlike the marking menus, the user need not first select the object she wishes to

modify before pulling up the menu - instead, these two operations are unified because

some minimal geometry which represents the root of the dial menu is always visible as

a component of the object that the menu is associated with.

To activate a dial menu, the user presses a button on the mouse or tracker, then

drags to the appropriate item. As with the marking menus, a line trace is left behind the

cursor as visual feedback of the gesture being performed. Expert users who have

retained a mental model of the physical layout of the menu can quickly make menu

selections by performing the appropriate gestural movement without first waiting for

the menu items to appear. The dial menus are hierarchical, and users may navigate

both down and up the hierarchy. When the user releases the mouse or tracker button,

the menu items and trace are undrawn and the chosen action (if any) is performed.

|

!

I

|

i

. B&W ' of streams
"'-. colormap :#

tln lln!![] "'Q ..!

"" thick lines

s

• "" scale color "
, colormap

b 't

20 " 12 . .-"

4

8

Figure 12: A sample dial menu. The root level menu on the left (a) has six items. Notice

how related functions are placed on opposite sides of the dial (e.g,. thick and thin lines).

The circle at the center represents the 3D geometry which is always visible. This

geometry could be text or an icon. The dotted lines extending outward from the center
indicate the six regions of this menu. By moving the cursor into the region labeled, "# of

streams", one of the two submenus on the right (b and c) is displayed with just the root

of the parent menu (the rest of the items on the root menu are undrawn). The menu in

the upper right (b) is a hierarchical submenu with additional items. The "up" item on

this submenu allows navigation back up the hierarchy to the root (a). The menu in the

lower right (c) is a virtual dial. In an WE, by rotating the tracker about a single axis, a

continuous range of values can be selected. Navigation back up the hierarchy is

accomplished by moving the cursor back toward the root.

Page 36

Three-DimensionalUserInterfacesforScientificVisualization

In addition to the conventional kind of menu items which perform a given

function on a mouse up event, we have implemented a class of menu items which

operate like continuous controllers (Figure 12, lower right). For example, a continuous

dial item might be represented visually by a set of tick marks spaced at equal angular

intervals on a circle. As the 2D mouse cursor moves around the circle, the item's

callback function is executed with the appropriate parameter. In an IVE, we can use the

additional degrees of freedom of the 6D input device to control this type of menu item

simply by rotating the tracker in place. In practice, it is difficult to rotate the physical

tracker a full 360 ° in a single motion, so we multiply the input rotations by a factor of

three. Thus, with 1/3 twist of the tracker, we can access the full range of the

controller 1°. A similar type of controller was implemented in JDCAD, but was not

integrated into a menu.

One can also navigate back up the hierarchy from a continuous controller. On the

desktop, the user can do this by pointing outside of the circle; in an IVE, she simply

moves the tracker back towards the center of the parent menu.

We are also considering implementing slider items in our menus. These would

operate similarly to the dial item described above but only use the positional

information of the 6D tracker (or 2D mouse). Like the dial item, the slider's callback

function is called continuously as the user interacts with the slider.

7 Other Visualization Techniques

While our primary aim in this grant is to develop new user interfaces for scientific

visualization applications, we have also spent some time developing visualization

techniques that seemed interesting and innovative. The "flux ball" and "smoke rings"

techniques described below were developed within the same visualization system as

our other widgets, and currently work with regular and curvilinear datasets.

Implementing these techniques also exposed some new 3D interface design issues.

7.1 Flux Ball

The flux ball (Figure 13) is a method for visualizing the direction of a fluid flow as

it passes through a region of space. In our case, we use a spherical region. As fluid

flows into or out of the spherical region, we calculate the angle at which it crosses the

boundary and compare this with the normal to the sphere's surface at that point. If this

angle is small, the fluid is flowing almost directly into or out of the region; when the

angle is large, the fluid is flowing nearly tangent to the surface. By sampling this angle

at a number of points on the surface of the sphere, we can produce contour lines of

similar angles. We draw these contours and color them according to the direction of

flow and the magnitude of the angle. Blue indicates flow into the region, red indicates

flow out of the region, and the intensity of the color indicates the angle (small angles

are more intense than large). The final effect is a set of concentric contours around the

10.Though this does reduce correlation between the user's hand and the direction that the cursor is pointing,

we have found it easier to use than the clutching approach which requires a more complex interaction dia-

log. User studies will be required to validate this assertion.

Page 37

Three-DimensionalUserInterfaceslk)rScientificVisualization

sphere oriented in the direction of flow.

Figure 13: Flux balls. The three flux balls in this image are embedded in a dataset of
convection currents in the Earth's mantle. Blue lines indicate flow out of a ball; red lines

indicate flow into a ball. The black lines indicate where the flow is tangent to the surface
of the ball. A few streamlines indicate the direction of flow as well.

In our initial implementation of this widget, the sample region was drawn as a

fully opaque sphere and often obscured other visualizations and geometry in the scene.

Also, one could not see the contour lines on the side of the sphere facing away from the

viewer. A solution to this may be to render the sphere transparently.

7.2 Smoke Rings

Smoke rings (Figure 14) are similar to streamlines but do not represent the entire

path of a particle through the dataset. Instead, we arrange a set of particles in a ring

and advect them all simultaneously through the dataset. At each integration step, we

draw a line connecting all of the sample points together. Thus, at the first integration

step, we see a ring-shaped object. As this ring of points is advected through the dataset,

it deforms according to the vector field data. In order to maintain the ring's visual

continuity, if any two adjacent points move too far apart from each other, new points

are introduced to fill the gap. Just as with the rake widget, we can see how points that

are initially in close formation diverge as they pass through the dataset, so that features

such as vortices and divergences are revealed by the ring's deformation.

The smoke ring technique was developed by an undergraduate student during a

summer internship in our Graphics Group. We are considering extending this

technique to arbitrary surfaces advected through the field, using an oriented-particle

system.

Page 38

Three-DimensionaJUserInterfacesforScientific Visualization

Figure 14: Smoke Rings. The smoke ring widget defines a set of sample points which are

advected through the dataset. These points, which form a circle at first, flow through the

dataset and the circle is deformed accordingly. Points are colored by velocity.

Page 39

Three-Dimensional User Interfaces for Scientific Visualization

8 Annotation System

One of the common tasks of scientists is to maintain accurate records of

interesting areas in a dataset, keeping track of a feature's importance and type. To

address this need, we built an annotation system for time-varying fluid flow datasets

which allows users to create annotations then query them with filters [31].

This annotation system allows the scientist to create typed geometrical point and

volume markers, and add associated data, including the date, the user making the

annotation, the type of feature, and a description. These can then be filtered either

through a 2D interface or through a 3D "Magic Lens" [4], which hides irrelevant

annotations as the scientist moves the lens through the dataset.

9 Techniques for Real-Time Interaction

The computations required by scientific visualization techniques often cannot be

done at interactive rates (generally defined to be at least ten frames per second).

Furthermore, even if the computations can be done quickly enough, a visualization

may be so graphically complex that it cannot be rendered in real time.

To address these concerns, we have experimented with time-critical interfaces for

isosurfaces and streamlines, using techniques that compute only the local visualization

while users interact with a probe, and then gradually complete the full computation

after the probe is released. This style of interaction is useful both for large static

datasets and for time-varying datasets when it is impossible to calculate visualizations

quickly enough to create useful animations. For instance, if an isosurface of a time-

varying dataset takes more than a fraction of a second to compute, then one is better off

first computing each frame of an animation of this isosurface off-line then viewing it

later on videotape at a reasonable speed. By applying time-critical techniques, we can

often achieve interactive visualization of complex datasets without such memory- and

time-intensive techniques.

A version of the direct-manipulation "grab-anywhere" streamlines described

above was made time-critical by dynamically adjusting their lengths depending on the

amount of computation possible in a given time period (usually about a tenth of a

second). As the streamline is dragged, it integrates outward (both forward and

backward) from the selected point as far as it can until the next frame must be started.

This was part of a research project to minimize lag in virtual environments which was

published in Presence [41].

A complementary approach to achieving real-time interaction is to use

multiprocessing techniques to parallelize computations. At the SIGGRAPH conference

this past summer, we built a demonstration for the Sun booth based on the application

we developed for this research grant. In this application, we used the Shuttle dataset

and parallelized the rake, cutting plane, hedgehog and particle advection visualization

techniques on an eight-processor Sparc-10 workstation. We found this to be very

effective in maintaining fast interaction speeds, achieving near-linear speedup.

Page 40

Three-DimensionalUserInterfacesforScientificVisualization

9.1 Time-Critical Scheduling Algorithm

We developed a framework to better integrate the time-critical visualization

algorithms already in our existing system (streamlines and isosurfaces). Our

implementation [34] includes an algorithm for managing the scheduling of

visualization techniques on single- and multi-processor workstations. This algorithm

quickly optimizes a benefit function which is the product of several relevant factors:

• the inherent value of a given visualization technique

• a hysteresis function to encourage frame-to-frame visual continuity

• the benefit of spending additional time computing the visualization (e.g.,

computing more points along a streamline)

• the amount of user interaction with the visualization technique

This algorithm is used to schedule the allocation of computational resources for

both computation and rendering of visualization techniques, with minimal pipelining

of the computations. It has O(n log n) complexity 11 when generating an optimistically-

feasible schedule (O(n 2) complexity for a guaranteed schedule), and iteratively refines

its results, so can return a feasible schedule at any time. When allowed to run to

completion, the scheduling algorithm achieves near-total, good usage of all the

processors in the multiple-processor system.

We intend to carry out informal user studies to determine which aspects of the

real-time scheduling are most important in practice. In addition, through working with

perceptual psychologists to determine the visual importance of rendered objects and

with scientists to determine the semantic value of various types of visualizations, we

would be able to develop much more relevant benefit functions.

Another aspect of time-critical rendering is the perceptually based selective

degradation of streamlines and isosurfaces. For example, many of the polygons in a

generated isosurface may be too far away from the viewer to be perceptually relevant,

and could be culled in favor of those which are closer to the viewer. Fast algorithms for

reducing the number of points in streamlines or the number of polygons in isosurfaces

could prove very useful in maintaining rapid interaction with the dataset.

10 Evaluation

Numerous guidelines for user interface design have been proposed and

implemented for windows, icons, menus and pointers (WIMP) interfaces on desktop

computers, including those for Macintosh, Windows, X and others. This style of

interface is the accepted standard for most desktop operating systems and applications

today. In contrast, the discipline of user interface design for interactive 3D graphics

applications is still young compared to 2D UI design. Although many interaction

techniques have been implemented and used in interactive 3D graphics applications,

little is known about which techniques are successful and why. This is partly because

very few formal studies have been performed to test these interaction techniques

11 .n is the number of tasks to be scheduled.

Page 41

Three-DimensionalUserInterfacesforScientificVisualization

[21][22].
Since our system facilitates rapid prototyping of user interfaces, the interaction

techniques and widgets that we have implemented for this project were produced over

multiple iterations of design, implementation and evaluation. Most often, the

evaluation phase consisted merely of reviews by members of the research team of

incremental changes to the interface. We did perform a set of informal pilot tests and

user studies, however, over the course of this grant which focused on evaluating

specific interfaces. In these studies, we attempted to determine which of a variety of

possible designs was best for specific tasks. The first study focused on positioning

tools; the second on selection techniques in an IVE.

10.1 User study: Positioning tools

In spring, 1994, a Master's student in the Graphics Group conducted a user study

[26] of some of the positioning tools that we had implemented in our fluid flow

application. The goal of this study was to determine the effectiveness of these tools

across a range of input devices using a desktop ("fishtank') VR system. The subjects for

the study were chosen with a high bias toward computer scientists, but with no

concern for their knowledge of CFD concepts.

This study was modeled after a study by Jacob and Sibert [25] in which subjects

were asked to perform two tasks to test the hypothesis that the "structure of the

perceptual space of an interaction task should mirror that of the control space of its

input device". The first task in Jacob's study was to match the x-y position and size

(scale) of a square with a target square. In the second task, subjects were to match the

position and color (in grayscale) of a square with a target. Each task was to be

completed with two input devices, one with integral degrees of freedom (a 3D tracker),

and a second with separable degrees of freedom (a 2D mouse with a mode change for

the third degree). This yielded a two by two experiment.

It was found in this study that when matching position and color, the separable

2D device was more effective than the 3D device because position and color are

perceptually distinct qualities - using a 3D input device to simultaneously modify both

parameters was confusing. Likewise, the 3D device was superior to the 2D device for

simultaneously controlling position and size, indicating that these parameters are

cognitively integral.

In our study, users were asked to find a number of features (sources, sinks, and

vortices) in an analytically generated 3D flow field by moving streamlines through it.

Four positioning techniques were tested: screen-aligned translation using the 2D

mouse; full 3D translation with the 3D mouse; and interactive shadows using both 2D

and 3D devices. It was found that the interactive shadows were only really useful when

using a 2D mouse, and they confused people who tried to use them with the 3D mouse.

Indeed, since the 3D mouse gave them three degrees of translation freedom by itself,

the interactive properties of the shadow widgets did not help at all except as a depth
cue.

10.2 Pilot study: Selection techniques in IVE's

More recently, we designed a set of pilot studies to evaluate some of the selection

Page 42

Three-DimensionalUserInterfacesforScientificVisualization

techniques that we developed for use in IVE's (described earlier in this document). We
tested the efficacy of thesetechniques for avariety of simple tasks,all of which
involved selecting a single target object from a collection of objectsin a3D scene.

Our hypothesis in theseexperiments is that the new selection techniques that we
have developed to alleviate the negative effectsof tracker noise on selection and
manipulation tasksin IVE's (i.e., the aperture-basedanorientation techniques) will in
general be easier to useand will prove more successfulthan their conventional
counterparts (i.e., the laser pointer and touch techniques).The successof a technique is
to be measuredby anumber of factors, including the speedwith which a subjectis able
to select the target object, the repeatability of the task, and whether the subject is able to
retain an understanding of how eachparticular technique is used.

Our experiments consist of four phasesdivided into two sessionstaken one week
apart. The first part of the experiment involves each subjectfilling out a questionnaire
to assesstheir background experience,followed by a short interview basedon the
questionnaire to further evaluate our assessmentof the subject.The secondpart of the
experiment involves the subjectstrying out the various selection techniques.This
sessionis intended to assessthe learnability of eachtechnique. The third phasecalls for
the subject to first wait one week in order to assimilate her experiencein Phase2.
During this time, the subject may return to the lab to practice with the various
techniques,or ask questionsabout the techniques.At the end of this week, another test
will be conducted similar to the first. The last phaseis a final interview in which we ask
detailed questions about the techniques.

The results from thesepreliminary pilot studies seemto confirm our hypothesis.
Using the aperture technique, subjectsperformed the simple selection taskswith
greater accuracyand speedthan with the more conventional laser pointer and touch
techniques.

As a side effect of thesestudies, we were ableto determine other useful
information about interaction in virtual environments when using the display and
tracker hardware available to us. We found, for instance, that the error from noise
inherent in the magnetic tracking system,coupled with shakinessin the subject's hand
and arm, produced significant positional and rotational errors. By itself, the tracker has
a positional error of about +0.1 inches, and a rotational error of +1 degree. When held

by a subject, the positional error is +0.25 inches, and the rotational error is +5 degrees.

This data suggests that with the unmodified touch technique (which relies on the

position of the tracker), objects that are any smaller than 0.5 inches across will be very

difficult if not impossible to select reliably. Likewise, the laser pointer technique

(without the aperture), which is dependent on the orientation of the tracker, can not

reliably select objects smaller than 6.25 inches at a distance of 3 feet (about arm's

length). Therefore, selection techniques must be designed to allow for these errors so

that objects that fall outside of these thresholds can be selected in IVE's. We feel that

the selection techniques that we have implemented are successful in this regard.

11 Future Work

We intend to continue our investigation of user interfaces for IVE's by continuing

to refine our existing interfaces through user testing, and by experimenting with new

Page 43

Three-DimensionalUserInterfacesforScientificVisualization

interface techniques that push the stateof the art. There are anumber of key areasthat
we will focus on:

• more techniques for controlling parametersof visualization techniques
• extensions to the annotation system
• using animation
• conducting more user studies and pilot studies
• navigation

We discuss eachof theseitems in the following sections.

11.1 Controlling parameters of visualization techniques

The user interface widgets that we have designed to date have been limited

mainly to those which control the geometrically defined parameters of visualization

techniques. For example, we use the geometry of the generalized probe widgets to

specify the position and orientation of a probe in 3D, and augment these probes with

additional components to control the resolution of the sample points in the widget's

space. Where appropriate, the size of the probe is controlled by a separate component

of the probe widget. We also use additional widgets like object handles and interactive

shadows to manipulate the probes in 3D.

While this approach has yielded good results, it does not address the need to

control non-geometric attributes of visualization techniques. Currently the only way to

modify which field of a dataset a probe is visualizing is via a separate 2D interface or a

command-line. These options are clearly unacceptable for VR environments. Therefore,

part of our continuing research is to investigate methods for modifying these kinds of

parameters within an IVE. Our exploration of dial menus is a step in this direction.

Gesture-based interfaces may also be a possible solution in some cases.

We also plan to experiment with using our glove input device within the virtual

environment. We want to use the simple posture-recognition algorithm which we have

implemented for such tasks as choosing menu options or controlling simple 3D sliders.

Additionally, it has been suggested by some in the human-factors community that the

mere presence of a model of one's hand in the IVE helps the user understand her

relationship with the environment [35]. Of course, the hand model must not obscure

important objects in the scene, but this problem can be avoided by constructing the

model with transparent geometry, or even simple lines instead of polygons.

Implementing a two-handed interface [8] would also be an excellent extension of

our work, though it would require additional hardware. With such an interface, we can

leverage the benefits of using the non-dominant hand for coarse actions, such as

moving a probe to a region of the dataset, then using the dominant hand to fine-tune

the probe's position and orientation.

11.2 Annotation

The annotation system that we previously implemented could be very useful in

situations where it is essential to reduce the number of objects visible in a scene. With

some modification to our previous annotation system, we could implement annotations

Page 44

Three-DimensionalUserInterfacesforScientificVisualization

which behaved more like the links found in VRML browsers. Simple geometric
markers could be created on the fly by auser which are links to more information
about a particular feature of the datasetor specific visualization technique. Annotations
could also be used to store simple animations (seenext section).

11.3 Animation

In the kind of exploratory visualization that we have been experimenting with

under this grant, we have found that a great deal of information about a dataset can be

gathered by interactively dragging probes back and forth through it. While the

placement techniques we have developed are not precise, they can be used to quickly

and easily demonstrate important features of a dataset. We wish to automate this

process somewhat by allowing users to record animations of probe movements. One

technique simply samples the user's movements, converting the tracker's position at

each timestep into a single keyframe of an animation (alternatively, the system can

record user interactions as forces upon the 3D object as in the placement technique

described earlier). Another perhaps simpler approach requires only that the user

specify beginning and end points of the object's motion, and the system fills in the

intermediate positions by linear interpolation over a fixed number of timesteps.

11.4 User Studies and Pilot Studies

The studies we have done to date have proven very useful in determining the success

or failure of specific interface designs. We intend to continue this effort by evaluating

other aspects of the interfaces that we have implemented, including the dial menus,

manipulation techniques, other selection techniques and new widget designs. For exam-

ple, one potentially very useful test would be to compare the menu- versus widget-based

interfaces. We might test the relative ease and speed with which a subject can configure a

rake widget to have a certain number of streamlines using the different menu-based

solutions and the 3D slider widget. Another study might test the usability of the interac-

tive shadow widgets in an IVE using the different selection techniques described earlier

(Section 6.1).

11.5 Navigation

Navigation techniques are very important components of IVE's, but we have only

scratched the surface with the few techniques we have implemented. The walking and

flying techniques that we support are both "egocentric" modes in which the user

moves through an environment which is fixed in space. An alternative is to reverse this

relationship and fix the user's position in space, allowing her to "grab the world" and

move it around relative to her own position (similar to the method implemented in

[40]). Using a two-handed interface, it would be straightforward to extend this

technique to scale the world up or down so that minute details of a CFD dataset could

be more easily observed, or, conversely, so that the user could move large distances

very quickly.

Page 45

Three-DimensionalUserInterfacesforScientificVisualization

12 Publications and Reports Related to this Grant

• Meyer, T. and Globus, A. Direct manipulation of isosurfaces and cutting planes in

virtual environments. Technical Report CS-93-54, Department of Computer

Science, Brown University, 1993.

• Katz, J. Comparison of interaction techniques using 3D widgets across

multidimensional input devices. Brown University MS Thesis, May 1994.

• Loughlin, M.M. and Hughes, J.F. An annotation system for 3D fluid flow

visualization. In Proceedings of Visualization "94, 1994.

• Herndon, K.P. and Meyer, T. 3D widgets for exploratory scientific visualization. In

Proceedings of the 1994 Symposium on User Interface Software and Technology

(UIST'94), pages 69-70, November 1994.

• Meyer, T. and Hughes, J. F. Scheduling time-critical graphics on multiple

processors. Brown University Technical Report, 1995.

• Forsberg, A., Herndon, K.P. and Zeleznik, R. Effective Techniques for Selecting

and Direct-Manipulation of Local Objects in Immersive Virtual Environments.

Submitted for publication to UIST'96.

13 Brown Personnel

The Brown Graphics Group, directed by Professors Andries van Dam and John F.

Hughes, is a team of Ph.D., Masters, and undergraduate students and full-time staff, all

of whom work with the UGA system. Professor van Dam, the principal investigator of

this research, became in August, 1995 the Director of the NSF Science and Technology

Center for Computer Graphics and Scientific Visualization (the STC). He and John

Hughes are co-authors of the standard computer graphics textbook, "Computer

Graphics: Principles and Practice", along with James Foley and Brown Ph.D. recipient
Steven Feiner. van Dam is a co-founder of ACM SIGGRAPH and co-founder and first

chairman of Brown University's Computer Science Department. The Graphics Group

staff includes a Senior Research Scientist (Bob Zeleznik), a Research Scientist (Timothy

Miller), a User Interface Developer (Kenneth Herndon), an Assistant Director of the

STC (Brook Conner), an Educational Outreach Director (Anne Morgan Spalter) and a

Administrative Coordinator for the STC (Lisa Manekofsky). A number of graduate and

undergraduate students complement the group by assisting on various research

projects such as the 2D and 3D interface to the modeling and animation system. Five

students work part-time to support computers, video-teleconferencing, and other AV

equipment. Kenneth Herndon was the principle researcher being funded by this grant.

14 Facilities and Equipment at Brown

The facilities at Brown include a variety of workstations from HP, IBM, DEC, Sun

and SGI. Our Virtual Reality Lab contains a FakeSpace Labs BOOM, a Virtual

Technologies CyberGlove, and an Ascension Long-range Bird tracker. We also use a

StereoGraphics VR setup (LCD-shutter glasses, two Logitech 3D mice and a high-scan-

rate monitor attached to a Sun SPARC 10 GT workstation). A full audio/video editing

Page 46

Three-DimensionalUserInterfacesforScientificVisualization

system, including a non-linear editor, is used to record footage directly from
workstation screensand to edit videotapes.

We also maintain aWorld Wide Web site (http : //www. cs. brown, edu/

research/graphics) which contains general information about our group and

research projects.

15 Acknowledgments

The groups is sponsored by the following; the NSF Science and Technology

Center for Computer Graphics and Scientific Visualization, NASA, Sun Microsystems,

Taco, Microsoft, Hewlett-Packard and SGI.

16 References

[10]

[11]

[12]

[1] Ascension, Inc. Technical note available upon request from the company.

[2] AVS Software application.

[3] Bier, E.A. Snap-dragging in three dimensions. In Computer Graphics (Proceedings of

the 1990 Symposium on Interactive 3D Graphics), Vol. 24, No. 2, pages 193-204,
March 1990.

[4] Bier, E.A., Stone, M.C., Pier, K., Buxton W. and DeRose, T. Toolglasses and Magic

Lenses: The see-through interface. In Computer Graphics (Proceedings of

SIGGRAPH'93), Vol. 27, pages 73-80, August 1993.

[5] Bryson, S. Measurement and calibration of static distortion of position data from

3D trackers. NASA/Ames Technical Report RNR-92-011, March 1992.

[6] Bryson, S. and Levit, C. The Virtual Windtunnel: An Environment for the

Exploration of Three-Dimensional Unsteady Flows. In Proceedings of

Visualization'91, pages 17-24.

[7] Butterworth, J., Davidson, A., Hench, S. and Olano, T.M. 3DM: A three

dimensional modeler using a head-mounted display. Computer Graphics

(Proceedings of the 1992 Symposium on Interactive 3D Graphics), Vol. 25, No. 2, ACM

SIGGRAPH, March, 1992, pages 135-138.

[8] Buxton, W. and Myers, B. A study in two-handed input. In Proceedings of the ACM

CHI'86 Conference on Human Factors in Computing Systems. pages 321-326. May
1986.

[9] Card, S., and Robertson, G. and Mackinlay, J. The information visualizer, an

information workspace. In Proceedings of CHl'91 Conference on Human Factors in

Computing Systems. pages 181-188. May 1991.

Callahan, J., Hopkins, D., Weiser, M. and Shneiderman, B. An empirical

comparison of pie vs. linear menus. Proceedings of CHI "88, 95-100.

Cohen, M., Lin, D.M. and Ponamgi, K. I-COLLIDE: An interactive and exact

collision detection system for large-scaled environments. In Proceedings of ACM

Int. 3D Graphics Conference, pages 189-196, 1995.

Conner, D.B., Snibbe, S.S., Herndon, K.P., Robbins, D.C., Zeleznik, R.C. and van

Dam, A., Three-dimensional widgets. Computer Graphics (Proceedings of the 1992

Symposium on Interactive 3D Graphics), Vol. 25, No. 2, ACM SIGGRAPH, March,

Page 47

Three-DimensionalUserInterfacesforScientificVisualization

[30]

1992, pages 183-188.

[13] Darken, R.P. Hands-Off Interaction With Menus in Virtual Spaces. Proceedings of

SPIE "94, Stereoscopic Displays and Virtual Reality Systems. Vol. 2177, 365-371.

[14] Deering, M. HoloSketch: A virtual reality sketching/animation tool. In ACM

Transactions on Computer-Human Interaction, Vol. 2, No. 3, pages 220-238, Sept.

1995.

[15] Elliott, C., Schecter, G., Yeung, R. and Abi-Ezzi, S. TBAG: A high level framework

for interactive, animated 3D graphics applications. In Computer Graphics

(Proceedings ofSIGGRAPH'94), Vol. 28, pages 421-434. July, 1994.

[16] FAST! Software application.

[17] Ghazisaedy, M., Adamczyk, D., Sandin, D., Kenyon, R. and DeFanti, T. Ultrasonic

calibration of a magnetic tracker in a virtual reality space. In Proceedings of the

IEEE Annual Virtual Reality International Symposium (VRAIS), pages 179-188, 1995.

[18] Herndon, K.P., Hughes, J. and Forsberg, A. Compensating for static distortions in

electromagnetic tracking systems. To be submitted for publication in The Journal of

Graphics Tools.

[19] Herndon, K.P. and Meyer, T. 3D widgets for exploratory scientific visualization.

In Proceedings of the 1994 Symposium on User Interface Software and Technology

(UIST'94), pages 69-70, November 1994.

[20] Herndon, K.P., Zeleznik, R.C., Robbins, D.C., Conner, D.B., Snibbe, S.S. and van

Dam, A. Interactive shadows. In Proceedings of the 1992 Symposium on User Interface

Software and Technology (UIST'92), pages 1-6, November 1992.

[21] Hinckley, K., Pausch, R, Goble, J. and Kassell, N. Passive Real-World Interface

Props for Neurosurgical Visualization. ACM CHI'94 Conference on Human Factors

in Computing Systems, pages 452-458., 1994.

[22] Houde, S. Iterative design of an interface for easy 3D direct manipulation. In

Proceedings of CHI'92 Human Factors in Computing Systems, pages 135-142, May,
1992.

[23] Hutchins, E.L., Hollan, J.D. and Norman, D.A. Direct manipulation interfaces. In:

User Centered System Design (Norman, D.A. and Draper, S.W., Eds). Lawrence
Erlbaum Associates, Inc., 1986.

[24] IBM Explorer, Software application.

[25] Jacob, R.J.K. and Sibert, L.E. The perceptual structure of multidimensional input

device selection. In Proceedings of CHI'92 Human Factors in Computing Systems,

pages 211-218, 1992.

[26] Katz, J. Comparison of interaction techniques using 3D widgets across

multidimensional input devices. Brown University MS Thesis, May 1994.

[27] Kurtenbach, G. and Buxton, W. Integrating mark-up and direct manipulation

techniques. Proceedings of the 1991 Symposium on User Interface Software and

Technology (UIST'91), 137-144.

[28] Laurel, B. Computers as Theatre. Addison-Wesley Publishing Company, 1993.

[29] Liang, J. and Green, M. JDCAD: A highly interactive 3D modeling system.

Computers & Graphics (Pergamon), Vol. 18, No. 4, pages 499-506, July/Aug. 1994.

Liu, A., Tharp, G., French, L., Lai, S. and Lawrence Stark. Some of What One

Needs to Know About Using Head-Mounted Displays to Improve Teleoperator

Performance. In IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, pages

Page 48

Three-DimensionalUserInterfacesforScientificVisualization

638-648,1993.
[31] Loughlin, M.M. and Hughes, J.F.An annotation system for 3D fluid flow

visualization. In Proceedings of Visualization "94, 1994.

[32] MacKinlay, J., Card, S. and Robertson G. Rapid controlled movement through a

virtual 3D workspace. In Computer Graphics (Proceedings of the I986 Symposium on

Interactive 3D Graphics), pages 171-176, October 1986.

[33] Meyer, T. and Globus, A. Direct manipulation of isosurfaces and cutting planes in

virtual environments. Technical Report 93-54, Department of Computer Science,

Brown University, 1993.

[34] Meyer, T. and Hughes, J. F. Scheduling time-critical graphics on multiple

processors. Submitted to SIGGRAPH'95.

[35] Proffitt, Dennis. Notes from Human Factors course at VRAIS'95.

[36] Robinett, W. and Holloway, R. Implementation of flying, scaling, and grabbing in

virtual worlds. Computer Graphics (Proceedings of the 1992 Symposium on Interactive

3D Graphics), Vol. 25, No. 2, March, 1992, pages 189-192.

[37] Shneiderman, B. Direct Manipulation: A Step Beyond Programming Languages.

IEEE Computer 16, 8 (Aug. 1983) 57-69.

[38] Snibbe, S.S., Herndon, K.P., Robbins, D.C., Conner, D.B. and van Dam, A. Using

deformations to explore 3D widget design. Computer Graphics (Proceedings of

SIGGRAPH'92), Vol. 26, No. 2, July, 1992, pages 351-352.

[39] Stevens, M.P., Zeleznik, R.C. and Hughes, J.F. An architecture for an extensible

3D interface toolkit. In Proceedings of the 1994 Symposium on User Interface Software

and Technology (UIST'94), November 1994.

[40] Stoakley, R., Conway, M.J. and Pausch, R. Virtual reality on a WIM: Interactive

worlds in miniature. In Proceedings ofACM SIGCHI'95, 1995.

[41] Wanger, L., Ferwerda, J.A. and Greenberg, D.P. Perceiving Spatial Relationships

in Computer-Generated Images. In IEEE Computer Graphics and Applications, Vol.

12, No. 3, pages 44-58, May 1992.

[42] Wloka, M.M. Lag in multiprocessor virtual reality. PRESENCE: Teleoperators and

Virtual Environments, Vol. 4, No. 1, 1995.

[43] Wloka, M. and Greenfield, E., The Virtual Tricorder: A Uniform Interface for

Virtual Reality. In Proceedings of 1995 Symposium on User Interface Software and

Technology (UIST'95), pages 39-40, Nov. 1995.

[44] Zeleznik, R.C., Conner D.B., Wloka, M.M., Aliaga, D.G., Huang, N.T., Hubbard,

P.M., Knep, B., Kaufman, H., Hughes, J.F. and van Dam, A. An object-oriented

framework for the integration of interactive animation techniques. In Computer

Graphics (Proceedings ofSIGGRAPH'91), Vol. 25, No. 4, pages 105-112, July 1991.

[45] Zeleznik, R.C., Herndon, K.P. and Hughes, J.F. Sketch: A system for rapidly

constructing 3D models. To be published in Computer Graphics (Proceedings of

SIGGRAPH'96), July 1996.

P_e49

Three-Dimensional User Interfaces for Scientific Visualization

Appendix A: Tracker Calibration 12

Electromagnetic (EM) trackers are commonly used for sensing 3D position and

orientation of participants in IVE's. But in typical physical environments, such VR

equipment is rarely as accurate as the product specifications assert. This is because

metallic objects and electronic equipment disturb the otherwise uniform magnetic

fields generated by EM. The resulting measurement errors are often great enough to

pose significant usability problems. Fortunately, when these distortions are static, one

can partially compensated for them in software. To do this, the physical environment

must be sampled on a regular grid to obtain a mapping from known locations in space

to (incorrect) positions measured by the tracker, and then software can use this

mapping to infer the actual position of the sensor in subsequent use.

Static distortion is most often caused by objects in the tracker's immediate vicinity

which either produce magnetic fields themselves or are sensitive to them. Objects made

of ferrous metals and electrical devices are the primary culprits. Since the position of

the receiver is determined by the strength of a magnetic field, it stands to reason that

any additional sources of magnetism in the environment would affect that reading. As

a result, there is often significant error between the actual position of the sensor and the

values reported by the tracker system. Without some form of compensation, this

distortion error greatly reduces the effective working volume of the tracker.

Various methods that compensate for static distortion errors have been

developed; all first sample the tracker volume at a known grid of points, and record the

tracker readings; they then use this data to infer a tracker-value-to-real-world mapping,

and apply this mapping to subsequent tracker values during actual use, to estimate real

world positions/orientations. These methods fall into two main categories: those based

on polynomial fitting and those based on interpolation. In every case, the working

volume of the tracker is sampled to obtain a mapping from the erroneous values

reported by the tracker to real-world locations. This data is called the mapping dataset.

The density of the samples in this dataset depends on the range of the tracker and the

severity of the distortions in its field. In the two documented calibration techniques, [5]

and [Cave], long-range trackers are used (an 8' radius from the transmitter), and

samples are obtained on a regular 1-foot grid. In the virtual reality application, a

software algorithm is then used to infer the actual position of the sensor based on this

mapping dataset.

The polynomial fitting method attempts to fit a polynomial to the samples of the

function F. That is, we ask "What nth degree polynomial best fits the sampled data in a

least-squares sense?"

With the interpolation method, the algorithm first locates the point in the

mapping dataset which is closest to the reported sensor location and determines in

which "cell" of the dataset it lies. Then, the distance from the input point to each of the

eight corners of this "cell" is calculated. Finally, using these distance values, the

algorithm computes a weighted average of the eight real-world locations

corresponding the corners, and reports the result.
Our calibration method, like the others mentioned above, starts with data

12.The following is an excerpt from [18].

P_e50

Three-Dimensional User Interfaces for Scientific Visualization

collection. We lay out a grid of tape on the floor of the lab, at 1-foot intervals, and place

a plastic tripod with plumb line above each grid crossing. The plumb line is marked at

1-foot intervals. This lets us place the sensor, carefully held level and grid-aligned, at

each point of our 6 x 7 x 8 foot grid and record the position and orientation reported.

Our own approach to interpolating data values is to first triangulate the domain

of the function F, and then to estimate F by piecewise linear interpolation across this

triangulation.

We divide each cubical "cell" of the grid into five tetrahedra. For each

tetrahedron, there is exactly one linear function of position that agrees with the

observed values at the four corners, so the interpolation scheme is unambiguous. For

this piecewise-linear interpolation scheme to succeed, the division into tetrahedra has

to be a triangulation of the entire cell array.

In practice, our approach has yielded excellent results. Correlation between actual

tracker position and the observed location of the cursor in the IVE is significantly better
than without the calibration.

Page 51

